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                     ssessing the exposure of species 
                     to climate change requires the 
                     ability to peer into the future 
and identify likely or potential changes 
in ecologically relevant variables. These 
variables can be both direct climatic 
factors, such as changes in temperature 
or precipitation, or indirect factors, 
such as shifts in ecosystem processes 
or interactions with other species. 
Models provide an important means for 
forecasting possible future conditions. 
A model constitutes a representation of 
a system, which enables researchers to 
investigate and understand the properties 
of that system. Depending on their design, 
models can also be used to simulate future 
conditions and outcomes. Although models 
can be powerful, they also have limitations. 
The statistician George Box famously has 
been quoted as saying “all models are 
wrong, but some are useful” (Box and 
Draper 1987). Considerable progress has 
been made over the past few decades, 
however, in developing robust and useful 
models for understanding both the earth’s 
climate systems, as well as the ecological 
responses to climate. 

This chapter provides an overview 
of the types of climate and ecological 
response models that are relevant to 
vulnerability assessments of species, 
habitats, or ecosystems. The purpose of 
reviewing these models is not to suggest 
that all vulnerability assessments will 

be involved in running these models: 
rather, it is to ensure that assessors are 
knowledgeable about the range of models 
available, and can be well-informed 
consumers, understanding the basis for 
and assumptions underlying widely used 
models. In particular, most vulnerability 
assessments will not involve running 
sophisticated and complex global climate 
change models, but will instead rely 
on existing scenarios and make use of 
available downscaled climate projections.  
Assessments more often will rely on 
application of ecological response models, 
although even those models may be 
supplanted or bolstered by existing studies 
in the scientific literature or by means other 
than modeling (e.g., expert elicitation). 

Climate Models

Increasing emissions of CO2, methane, and 
other heat-trapping greenhouse gases are 
perturbing average climate conditions at 
local to global scales in ways that cannot be 
predicted by the past. Instead, projections 
of future climate conditions rely on climate 
model simulations driven by assumptions 
about how population, energy use, and 
technology are likely to develop in the 
future. These assumptions are collectively 
known as emission scenarios, as they serve 
as the basis to estimate the emissions of 
greenhouse gases, particulates, and other 
pollutants that would result.
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Emission scenarios are then used as 
inputs to global climate models in order 
to simulate the changes in temperature, 
precipitation, and other aspects of climate 
likely to result from that set of assumptions. 
Global climate models represent climate at 
a relatively coarse resolution and they do 
not resolve differences in climate variables 
at scales finer than several hundred 
kilometers. The “basic” global climate 
models are the General Circulation Models 
(GCM), which are mathematical models of 
a planetary atmosphere or ocean based on 
given equations for physics, fluid motion, 
and chemistry. At the most comprehensive 
end of the spectrum are the coupled 
Atmosphere–Ocean General Circulation 
Models (AOGCM), which address additional 
factors such as models for sea ice or 
evapotranspiration over land.

Output from global climate model 
simulations can be used to calculate 
regional trends, but these are difficult to 
incorporate directly into planning efforts. 
For this reason, a range of downscaling 
techniques have been developed. Although 
downscaled climate projections often 
provide the spatial and temporal resolution 
needed to assess the impacts of climate 
change on a given region or system, it is 

important to understand the limitations of 
these data as well. Downscaled projections 
are uncertain for the same reasons as 
global projections: the range in plausible 
future scenarios; the sensitivity of the 
climate system to those emissions; our 
imperfect understanding of and ability 
to model the climate system; the natural 
variability of the climate system; and the 
degree to which the simulations are able 
to capture the relationship between local 
climate and large-scale drivers.

Due to the uncertainty inherent in 
future projections, multiple future 
scenarios should be considered in impact 
assessments. In an area where precipitation 
trends are highly uncertain, for example, 
a state might choose to consider two 
scenarios: one warmer and wetter, and one 
warmer and drier. Adaptation strategies 
that are robust to multiple likely climate 
change scenarios would be considered 
“no regrets” strategies. In some instances, 
expert opinion can be useful for assessing 
the likelihood of how future local climates 
will reflect regional projections or how 
habitats will change. Expert opinion 
should be accompanied by an estimate 
of certainty and description of the 
assumptions, evidence, or reasoning 
underlying the opinion.

Historical and Future 
Scenarios

Control Scenarios

Climate models are not rigidly controlled 
by boundary conditions, as are response 
models. Rather, they generate their own 
internal natural variability. Before they can 
be run in transient mode (i.e., generating 
information for real calendar years), 
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climate model simulations begin with 
a long, time-independent control run. 
External forcing mechanisms (e.g., the 
strength of the sun and the concentrations 
of key atmospheric gases and aerosols) 
are set to preindustrial conditions and the 
model is run for several hundred years 
in order to “spin up” to the equilibrium 
condition in which our planet exists.

This is an essential step as climate 
models are, at their most basic level, 
simply numerical approximations of the 
fundamental laws of physics that govern 
nature at the scale of the planet, including 
conservation of momentum, conservation 
of mass and energy, and the four laws of 
thermodynamics. Control runs are not 
intended to be used by anyone outside the 
modeling community; their purpose is to 
establish a baseline set of model conditions 
that can be used to initiate a transient 
simulation beginning in preindustrial times 
and moving forward in to the future.

Historical Scenarios

Once a preindustrial control run has been 
completed for any given climate model, 
a transient (time-dependent) simulation 
can be run, beginning in the year that was 
used to set conditions for the control run. 
This initial year varies from about 1850 to 
1890, depending on the global modeling 
group. Historical scenarios run from the 
beginning year, in the 1800s, through 1999. 
Each month, external forcing mechanisms 
observed or measured for that month in 
the past are input to the models. These 
observed drivers can include changes in 
solar radiation, volcanic eruptions, human 
emissions of greenhouse gases and other 
radiatively active species, and secondary 
changes in ozone and water vapor.

Collectively, these historical total (human 
and natural) forcing scenarios are known 
as the “20th Century Climate in Coupled 
Models” or 20C3M scenarios in the IPCC 
AR4. These historical 20C3M scenarios 
are essential as they provide a baseline 
of observed climate against which 
future climate change can be quantified. 
Future climate projections should 
never be compared directly to historical 
observations in order to calculate the 
amount of change that may occur, as even 
the best models contain biases relative to 
observations. Rather, future projections 
must be compared to historical simulations, 
as biases are assumed to remain relatively 
constant over time. This change, or delta, 
provides the most reliable information on 
future change.

Figure 4.1. Projected future carbon 
emissions for the SRES emission scenarios. 
Emissions for the highest scenario (A1FI) 
correspond to the red dotted line at the 
top, while emissions for the lowest (B1) 
scenario are indicated by the solid green 
line (Nakicenovic et al. 2000).
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Emissions Scenarios

To estimate potential climate changes 
through 2100, we need to ask:

•  How will human societies and economies 
evolve over the coming decades?

•  What technological advances are 
expected, and how will they affect 
emissions?

•  Which energy sources will be used in 
the future to generate electricity, power 
transportation, and serve industry?

The answers to these questions will affect 
future emissions of greenhouse gases from 
human activities. And these emissions will 
in turn determine future climate change at 
both the global and the regional levels.

To address these questions, in 2000 the 
IPCC developed a set of future emissions 
scenarios known as SRES (Special Report 
on Emissions Scenarios) (Nakicenovic 
et al. 2000). These scenarios use a wide 
range of projections for future population, 
demographics, technology, and energy use 
to estimate the greenhouse gas emissions 
that would result from a variety of possible 
futures. In doing so, they cover a wide 
range of plausible futures that illustrate 
differences in the extent and severity of the 
global warming that result from alternative 
emissions choices (Figure 4.1).

For example, the SRES higher-emissions or 
fossil-intensive scenario (A1FI) represents 
a world with fossil fuel–intensive economic 
growth and a global population that 
peaks mid-century and then declines. 
New and more efficient technologies 
are introduced toward the end of the 
century. In this scenario, atmospheric 

CO2 concentrations (the amount of CO2 in 
the atmosphere as a result of emissions) 
reach 940 ppm by 2100—more than triple 
preindustrial levels.

The lower-emissions scenario (B1) also 
represents a world with high economic 
growth and a global population that peaks 
mid-century and then declines. However, 
this scenario includes a shift to less 
fossil fuel–intensive industries and the 
introduction of clean and resource-efficient 
technologies. Emissions of greenhouse 
gases peak around mid-century and then 
decline. Atmospheric CO2 concentrations 
reach 550 ppm by 2100—about double 
preindustrial levels.

Concentration Pathways

New Representative Concentration 
Pathways (RCP) (Moss et al. 2010) are 
under development for the IPCC Fifth 
Assessment Report (AR5). In contrast to the 
SRES scenarios used in the AR4, the RCPs 
are expressed in terms of carbon dioxide 
equivalent (CO2-eq) concentrations in the 
atmosphere, rather than direct emissions.

Although climate model simulations are 
not yet available for the RCPs, it is still 
possible to place SRES-based projections 
into the context of these new scenarios by 
converting the SRES emission scenarios 
to CO2-eq concentrations. When we do 
that using the simple energy-balance 
climate model MAGICC (Model for the 
Assessment of Greenhouse-gas Induced 
Climate Change), we see that the highest 
RCP 8.5 corresponds closely to the higher 
SRES A1FI emissions scenario, with end-
of-century CO2-eq concentrations of 1465 
ppm for RCP 8.5 as compared to 1360 
ppm for A1FI (Figure 4.2) (Wigley 2008). 
In contrast, the lowest RCP 2.6 projects 
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a future where emissions are reduced 
significantly below even the lowest of the 
SRES scenarios, with CO2-eq concentrations 
rising to nearly 500 ppm then falling to 
450 ppm by the end of the century. The 
mid-low RCP 4.5 corresponds most closely 
to SRES B1, with CO2-eq concentrations of 
nearly 600 ppm by the end of the century 
as compared to 640 ppm for B1.

Figure 4.2 is an important comparison as 
it enables the climate model projections 
currently available (and indeed, all that 
will be available through 2012) to be 
placed in the context of the next generation 
of climate scenarios. It also reveals that 
the substantial difference between the 
SRES A1FI and B1 scenarios, although 
conservative in comparison to the RCPs in 
its estimate of the lower end of the range 
of future emissions, is still sufficient to 

illustrate the potential range of changes 
that could be expected, and how these 
depend on energy and related emission 
choices made over coming decades.

Uncertainties in Future Scenarios

It is important to note that, as broadly 
separated as they are, neither the SRES nor 
the RCP scenarios cover the entire range of 
possible futures. While the recent economic 
decline slowed CO2 emissions growth rates 
in comparison to previous years, actual 
emissions remain near the top of the range 
of IPCC scenarios for the period 2000 to 
2010 (Manning et al. 2010).

On the other hand, significant reductions 
in emissions, on the order of 80 percent 
below 1990 levels or more, could stabilize 
CO2 levels below the lowest SRES emission 
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Figure 4.2. Projected future CO2-equivalent emissions and concentrations 
for the SRES emission scenarios (IPCC AR4) and Representative 
Concentration Pathways (IPCC AR5).
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atmosphere, oceans, and earth’s 
surface. As output, AOGCMs produce 
geographic grid-based projections of 
precipitation, temperature, pressure, 
cloud cover, humidity, and a host of other 
climate variables at daily, monthly, and 
annual scales.

Because of the complexity of these models, 
they are generally designed and run by 
large research teams at supercomputing 
centers. Models are constantly being 
enhanced as scientific understanding of 
climate improves and as computational 
power increases. Over time, the number 
of global climate models has grown. By 
2008, 16 international climate modeling 
teams had submitted historical and future 
simulations from 25 different climate 
models to the IPCC’s AR4. All future 
simulations by these models agree that 
both global and regional temperatures 
will increase over the coming century 
in response to increasing emissions of 
greenhouse gases from human activities 
(Figure 4.3).

Model Selection

Some models are more successful than 
others at reproducing observed climate 
and trends over the past century in 
particular geographic regions. Inter-model 
comparisons (e.g., Kunkel et al. 2006; Wang 
et al. 2007; Stoner et al. 2009) generally 
find that climate models tend to fall into 
three broad categories: “good” models 
that are able to simulate important climate 
features, from Arctic weather systems to 
natural variability such as El Niño, across 
the globe; “fair” models that perform 
well in some regions and at some tests, 
but poorly in others; and “poor” models, 
usually those in relatively early stages 

scenario (e.g., Meinshausen et al. 2006). 
Such policy options were not considered in 
the SRES scenarios, although the new RCPs 
(Moss et al. 2008, 2010) currently under 
development for the IPCC Fifth Assessment 
Report at least partially address this issue.

Global Climate Models

Description

Emissions or concentration scenarios are 
used as input to global climate models, 
which vary in complexity. The most 
complex are the AOGCMs. These are large, 
three-dimensional coupled models that 
incorporate the latest understanding 
of the physical processes at work in the 

Figure 4.3. Projected future global 
temperature change for the SRES emission 
scenarios (degrees Celsius). The range for 
each individual emission scenario indicates 
model uncertainty in simulating the response 
of the earth system to human emissions of 
greenhouse gases (IPCC 2007b).
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of development, that consistently fail to 
reproduce fundamental aspects of the 
earth’s climate system.

For the purposes of global climate model 
selection for impact analyses, however, the 
most relevant point is that multi-model 
comparisons have shown that, for a given 
emissions scenario, the average of multiple 
models generally provides a more robust 
picture of future conditions than any one 
model (Tebaldi and Knutti 2007). Moreover, 
evaluating which set of models may be 
“best” at simulating future trends over 
any given region and for a certain variable 
is a long and involved process, generally 
requiring a fundamental understanding of 
climate dynamics that have contributed to 
climate variability and long-term trends 
over the region of interest. (Although 
simple biases or differences between 
models and observations have been 
used in the past to judge which models 
are “better” than others, this practice is 
highly discouraged as the information 
derived from such a calculation bears little 
relevance to actual model performance in 
simulating climate change and may mislead 
more than it may guide.) So in evaluating 
the potential impacts of climate change on 
any given region, it is always best to use the 
average of multiple global climate models 
rather than to rely on one or two. As it may 
not be possible to use all global climate 
model simulations, some general criteria 
for model selection are the following:

•  Consider only well-established models, 
whose strengths and weaknesses are 
already extensively described and evaluated 
in the peer-reviewed scientific literature. 
The models should have participated in the 
Coupled Model Intercomparison Project 
(CMIP; http://cmip-pcmdi.llnl.gov/) or 

otherwise been evaluated and shown to 
adequately reproduce key features of the 
atmosphere and ocean system. Key features 
include seasonal circulation patterns, 
atmosphere–ocean heat fluxes, El Niño, 
and other teleconnection patterns affecting 
climate in the region (Covey et al. 2003; 
AchutaRao and Sperber 2002; Chapman 
and Walsh 2007; DeGaetano et al. 2008; 
Vrac et al. 2006).

•  The models chosen should encompass 
the greater part of the range of uncertainty 
in climate sensitivity simulated by global 
climate models. Because many of the 
processes at work in the earth–atmosphere 
system are not yet fully understood, these 
are represented somewhat differently in 
different global climate models. A range in 
projected temperature change and other 
climate variables arise from the different 
climate sensitivity of the models.

•  From a purely practical perspective, 
the projections required for the impact 
analysis must be available from that model, 
preferably for multiple future scenarios 
in order to encompass the uncertainty in 
predicting future drivers of change.

USFWS
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•  Finally, note that within any climate 
model, uncertainties will vary for different 
simulated phenomena. For example, 
large-scale surface temperature is 
generally trusted more than precipitation, 
which requires many physical processes 
to be simulated correctly at the same 
time and place.

 
Downscaling of Global 
Model Simulations

The geographic grid cells that form the 
basis of AOGCMs typically range in size 
from about 160 to 800 kilometers per 
side. In general, this type of resolution 

Asking how much sea-level rise to assume in coastal vulnerability assessments is a common question, but not 

necessarily straightforward to answer. As with modeling the climate system itself, projecting how much global sea 

levels will rise due to global warming is complex, and there are many sea-level rise scenarios in the literature. In 

general, global sea-level rise figures refer to changes in eustatic sea level, referring to changes in the volume of 

seawater. For planning purposes, it is important to recognize that a number of other factors affect the amount of 

relative sea-level change experienced in a given area. Local land subsidence, for example, will mean that the rate of 

relative sea-level rise in that area will be higher than the eustatic rate. Nevertheless, projections for eustatic sea level 

are an important baseline for assessing coastal vulnerability.

Modeling eustatic sea level requires integrating factors such as thermal expansion of the oceans as well as rates of 

change of land-based ice, including glaciers and continental ice sheets, all of which are subject to uncertainties. 

Some of the most widely used scenarios are from the IPCC, whose most recent estimates range from an additional 7 

to 23 inch rise in global average sea level over 1990 levels by the 2090s (IPCC 2007b). There is compelling new 

evidence, however, that because these figures ignore recent dynamic changes in Greenland and Antarctica ice flow, 

they underestimate the rate of sea-level rise that we are likely to experience during this century (Overpeck and Weiss 

2009; Pfeffer et al. 2008). Taking at least some of this accelerated melting into account, Vermeer and Rahmstorf 

(2009) suggest that a feasible range might be 30 to 75 inches for the period 1990-2100. Complicating matters, 

the magnitude of sea-level rise will not be globally uniform because of ocean circulation patterns and the earth’s 

rotation, gravitational differences, local and regional geological differences, and other factors (Bamber et al. 2009; 

Mitrovika et al. 2009; Church et al. 2004; Yin et al. 2009). 

Ultimately, choosing which scenarios upon which to base vulnerability assessments and associated climate change 

adaptation strategies will depend on how much risk we are willing to accept. When relatively little is at stake in the 

way of infrastructure investment or public inconvenience, we could choose to design for a conservative or low-end 

sea-level rise scenario. Where more is at stake, such as the decimation of habitats critical to a region’s ecological 

and economic well-being, we might design for a mid-range or aggressive sea-level rise scenario. The bottom line, 

however, is that we may never know with certainty how much or how fast sea level will rise. Accordingly, using a 

range of scenarios in your assessment might be the optimal approach.

Box 4.1. How Much Sea-Level Rise Should We Plan For?
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is too coarse to capture the fine-scale 
changes experienced at the regional scale. 
For this reason, a number of downscaling 
techniques have been developed to 
transform global climate model output into 
higher-resolution projections capable of 
resolving the impacts of climate change on 
local conditions.

Dynamical Downscaling

Dynamical downscaling, or regional 
climate modeling, uses a high-resolution 
climate model centered over a relatively 
small region and driven by global climate 
model output fields at its boundaries. 
Model grid cells range from 10 to 50 
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kilometers, and contain substantially 
different physics than the global models 
in order to resolve the physical processes 
that occur at spatial scales below those of 
the global models. Regional climate models 
are able to simulate the dynamic changes 
in climate likely to occur as global climate 
changes; however, regional climate model 
simulations are expensive to run and 
few global climate models save the high-
resolution temporal fields (at 3 or 6 hours) 
required to drive the regional models. 
Hence, regional model simulations tend 
to be limited to specific timeslices from 
future decades, rather than a continuous 
time period, and tend to be driven by 
several global models rather than the full 
suite of IPCC global climate models. The 
most comprehensive set of regional model 
simulations has been generated by the 
North American Regional Climate Change 
Assessment Program (NARCCAP), which 
uses four regional model–global model 
pairs to simulate conditions for 2041 to 
2070 compared to 1971 to 2000.

Statistical Downscaling

Statistical downscaling relies on historical 
instrumental data for calibration at the 
local scale. A statistical relationship is 
first established between AOGCM output 
for a past “training period,” and observed 
climate variables of interest (here, daily 
maximum and minimum temperature and 
precipitation). This relationship is averaged 
over at least two decades to remove 
year-to-year fluctuations. The historical 
relationship between AOGCM output and 
monthly or daily climate variables at the 
regional scale is then tested using a 
second historical “evaluation period” to 
ensure the relationship is valid. If so, 
then the relationship is finally used to 
downscale future AOGCM simulations to 
that same scale.

Unlike regional climate modeling, statistical 
downscaling assumes that the relationships 
between large- and small-scale processes 
remain fixed over time. This assumption 
may not always be justified, particularly 
for precipitation. However, analysis of 37 
stations in the state of Illinois suggests that 
this relationship only breaks down for the 
most extreme precipitation events above 
the 99th percentile of the distribution (Vrac 
et al. 2006). Analyses for the Northeast 
(Hayhoe et al. 2008) further indicate 
that, in areas of variable topography such 
as mountains and coastlines, statistical 
methods trained to match historical 
spatial patterns may perform better than 
regional climate models that are limited 
by their convection schemes (see Figure 
4.4). In addition, statistical downscaling 
has a substantial time and cost advantage; 
hundreds of years of model simulations can 
be downscaled using the same computing 
resources required to run only a few 
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years of regional-model downscaling. 
Three of the case studies in Chapter VII 
use statistical downscaling for climate 
change data. Case Studies 1, 3, and 6 rely 
on a tool called the ClimateWizard (www.
climatewizard.org), which was developed 
by The Nature Conservancy, University of 
Washington, and University of Southern 
Mississippi to enable technical and 
nontechnical users to access historical and 
projected climate change information for 
a given area based on downscaled data 
from a range of climate models, emissions 
scenarios, and time periods. In Case Study 
7, researchers will be conducting their own 
statistical downscaling projections for at 
least six future climate projections. 

Ecological 
Response Models

Ecological response models are a critical 
part of the overall vulnerability assessment 
process. They provide a way to assess 
the sensitivity and potential adaptability 
or resilience of wildlife species, habitats, 
and ecosystems to climate change 
(Wormworth and Mallon 2007). They also 
are fundamental to understanding the 
kinds of climate variables that are needed 
to conduct vulnerability assessments. As 
such, information from response models 
enhances the iterative dialog between 
biologists/ecologists and climatologists 
such that downscaled climate change 
variables address the most appropriate 
scales (temporal and spatial) and scope 
(types of variables that relate to sensitivity 
and/or resilience) needed to conduct the 
vulnerability assessment. This dialog is 
critical in identifying the spatial extent 
of the downscaled climate information 
that will then be used to assess exposure 

of species, habitats, and ecosystems. 
Moreover, response models help identify 
indicators and potential thresholds 
or tipping points that can be used in 
vulnerability assessments (Bradley and 
Smith 2004; Groffman et al. 2006).

The decision on which model or 
combinations of models to use depends 
on the species, habitats, and ecosystems 
of concern,  the types of questions being 
asked, and the particular end-users’ needs. 
The local geographic and biophysical 
characteristics of habitats and ecosystems 
require the use of response models that are 
well suited to the specific environmental 
settings (Primack et al. 2009). Moreover, 
the type of questions and needs associated 
with the vulnerability assessment affect 
the scale and scope of the assessment. The 
objective of some vulnerability assessments 
is to target species or geographic areas 
where species, habitats, and/or ecosystems 
are potentially most vulnerable to declines 
in conditions due to climate change 
(Bradley and Smith 2004). These types 
of vulnerability assessments are usually 
conducted at large basin or regional scales, 
and the results are used to target species 
and geographic areas where further 
attention (data gathering, modeling, etc.) 
is needed. Other vulnerability assessments 
rely on more complex models involving 
specific species or habitats in specific 
geographies, as well as a range of species 
traits and processes (Martin 2007).

An important part of model selection 
and/or development process is to 
clearly identify the endpoints of interest. 
Endpoints are definable and measurable 
aspects of the environment upon which 
environmental assessments are made. 
Lack of clear endpoints often reduces the 
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relevance and utility of the assessment 
results (Boyd 2007). In some cases, species’ 
vulnerabilities are assessed because they 
are the endpoint (e.g., a species listed 
through the ESA) or because they affect 
ecosystem functions (e.g., an invasive 
species as it affects fire disturbance 
regimes) (Hunter 2007).

Types of Response Models

This section briefly describes different 
types of response models and how they are 
generally used. Different approaches are 
often used in combination (Martinez-Meyer 
2005), but for clarity we provide basic 
descriptions of each.

Conceptual Models

Conceptual models are qualitative 
descriptions and diagrams of key attributes 
and processes related to specific species, 
habitats, or ecosystems of concern (see 
Schlesinger et al. 1990 for an example 
related to desertification). They also 
illustrate or describe important linkages to 
stressors, such aspects of climate and land 
use, and how changes in stressors affect 
important attributes (e.g., soil texture) 
and functions (nutrient uptake, water flux, 
etc.). These linkages to stressors provide 
the basic information needed to assess 
vulnerability (e.g., sensitivity), and help 
inform the spatial extent of the stressor 
needed to analyze exposure. Nearly all 
types of other response models are built 
from well-conceived conceptual models 
as they help identify key variables in 
models needed to assess sensitivity and 
exposure. For a review of conceptual model 
development see Heemskerk et al. (2003). 
Various types of conceptual modeling tools 

and software can be found at http://www.
fileheap.com/software/conceptual_data_
model.html.

General Characterization Models

Characterization models usually represent 
broad groups (e.g., amphibians, riparian 
species) or generalized traits to identify 
how groups of species might respond 
to climate and/or habitat change. These 
models can be fairly simple. For example, 
they can involve groupings of species 
based on their preference for certain 
habitats. Or, they can involve species 
grouped by physiological, functional, 
and/or other biological traits, and their 
potential sensitivity (response) to specific 
aspects of climate change (Lavorel et al. 
1997). In most cases, spatial distribution 
of sensitivity is estimated by applying the 
classes of vulnerability (characterization 
part) to species distribution maps (Lavorel 
et al. 1997). Another characterization 
approach involves meta-analyses whereby 
existing studies are pooled together to 
estimate common responses of species 
(Parmesan and Yohe 2003; Allen et al. 
2010). These can be especially effective 
at validating responses over large 
areas. The NatureServe Climate Change 
Vulnerability Index is an example of an 
easy-to-use characterization tool to assess 
vulnerability (http://www.natureserve.
org/prodServices/climatechange/
ClimateChange.jsp) (see Case Study 1).

Expert Opinion Models

These models are constructed from 
the opinions of experts on a particular 
species, habitat, or ecosystem. They are 
often used when existing data preclude or 
are insufficient to develop a quantitative 
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model. A series of workshops and/or 
surveys are often used to gather data 
from experts that are then used in model 
development. In some cases results from 
expert input are combined with other data 
(e.g., from existing publications). Statistical 
approaches (e.g., Bayesian statistics) are 
often used to combine these data from 
different sources to produce estimates 
of potential responses and uncertainty 
(Berliner et al. 2000; Prato 2009). Expert 
opinion is often used in assembling 
conceptual models (see previous 
discussion). There are many software 
modules that can be downloaded to assist 
in development of expert opinion models. 
Some examples include the Bayesian 
Analysis Toolkit (http://www.mppmu.mpg.
de/bat/), Treeage Pro software (http://
www.treeage.com/products/index.html), 
and the Delphi Decision Aid site (http://
armstrong.wharton.upenn.edu/delphi2/).

Habitat and Occupancy Models

Habitat and occupancy models are perhaps 
the most common models used to address 
potential vulnerability of species to climate 
and land-use change. Some habitat models, 
such as those that have been developed 
by the U.S. Geological Survey GAP model 
habitat suitability over large geographic 
areas based on the development of habitat 
criteria (developed mostly from expert 
opinion and published literature). These 
requirements (rules) are expressed as 
ranges in specific biophysical attributes 
(e.g., climate, soils, vegetation or land cover, 
elevation, etc.) that a species will occupy 
(e.g., “suitable” habitat). The requirements 
(range of biophysical conditions) are then 
applied to wall-to-wall biophysical data, 
such as through Geographic Information 
System (GIS) coverages or grids, to 

determine the spatial distribution of 
suitable habitat for individual species. In 
a few cases, species ranges and suitable 
habitat have been defined largely by climate 
variables (e.g., Climate Envelope models) 
(Harrison et al. 2006; Pearson and Dawson 
2003). In these cases, species sensitivities 
and vulnerability can be directly assessed 
with climate data. In cases where suitability 
is defined by vegetation or land cover 
attributes (including distribution), models 
of habitat shifts associated with climate 
change scenarios are needed to conduct the 
assessment (Johnson et al. 2005).

One example of this type of model is the Sea 
Level Affecting Marshes Model (SLAMM), in 
which a flexible and complex decision tree 
incorporating geometric and qualitative 
relationships is used to represent transfers 
among coastal habitat classes under 
various scenarios of sea-level rise (Clough 
et al. 2010). Case Study 5 uses SLAMM 
(Version 5.0) in an assessment of coastal 
habitat vulnerability in the Chesapeake Bay 
region. Vegetation- and habitat-associated 
response to climate change seem to be the 
most prevalent type of response model 
used to evaluate potential effects of climate 
change on species.

Niche-based models are also used to 
estimate species distributions and habitat 
suitability, but they generally involve more 
quantitative approaches with estimates of 
the probability of occurrence of a species. 
Approaches such as Genetic Algorithm for 
Rule-set Production (GARP) (Stockwell 
and Peters 1999) and Maximum Entropy 
modeling (Maxent) (Phillips et al. 2006) are 
examples of niche-based models. Niche and 
occupancy models produce probabilities 
of occurrence using locations records 
of species (e.g., from museum records, 
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systematic surveys, and other databases) 
and wall-to-wall biophysical data such 
as elevation, topography, temperature, 
precipitation, soils, and geology to name 
a few (Ballesteros-Barrera et al. 2007). 
As such, they define the “habitat niche” 
of the species. Other statistical models 
incorporate approaches like Regression 
Tree and Random Forests (O’Connor et 
al. 1996; Lunetta et al. 2004; Garzón et al. 
2006). These also can be used to access 
habitat suitability for species, but have the 
advantage of being able to assess how the 
importance of biophysical attributes change 
among different geographies (O’Connor 
et al. 2006).

When climate change variables are 
important attributes of these models, direct 
responses to different climate change 
scenarios can be assessed statistically. 
When biophysical attributes such as 
vegetation and land cover are the most 
important variables, species responses to 
climate change are evaluated by applying 
models of vegetation and/or land cover 
responses to climate. Statistical functions 
generated from these models result from 
spatial variation and not the responses of 
species and habitats to climate change over 
time. That is, they use spatial variability 
to determine how species and habitats 
might respond to climate change. However, 
recently, phylogenetic and phylogeographic 
analyses have been used in combination 
with niche-based models to improve 
response models by adding a historical 
response component (Waltari et al. 2007). 
These analyses use molecular markers 
and tree-based statistical approaches to 
determine how species have responded 
(diversification, range contraction, etc.) to 
historical climate change.

Software used to develop niche and 
occupancy models can be downloaded for 
free from the Internet, including GARP 
(http://www.nhm.ku.edu/desktopgarp/), 
Maxent (http://www.cs.princeton.
edu/~schapire/maxent/), Regression 
Trees and Random Forests (http://rattle.
togaware.com/rattle-download.html), and 
Bioclim (http://software.informer.com/
getfree-bioclim-download-software/). 
Additionally, many of the species models 
developed by the GAP program can also be 
downloaded, including biophysical data 
(http://www.nbii.gov/portal/server.pt/
community/maps_and_data/1850/species_
modeling/7000).

Vegetation/Habitat Response Models

Many of the approaches and models 
described for animal species above are 
also used to estimate potential response 
of plants to climate change (Lawler et al. 
2006). However, because of greater depth 
of historical records for plants (e.g., pollen 
records), it is often possible to refine plant 
and vegetation response models using 
historical records (Cole 2010). Moreover, 
plant and vegetation distribution records 
are considerably more abundant than 
animal records and, therefore, are easier 
to model using statistical approaches (Van 
Mantgem et al. 2009). Vegetation and plant 
community models are critically important 
to assess animal species changes, especially 
when animal distributions and habitat 
suitability are defined by vegetation and 
plant community variables. Robinson et 
al. (2008) provide an extensive review 
of vegetation climate models, broadly 
grouped into statistical species distribution 
models, GAP models, landscape models, 
biogeochemical models, and dynamic global 
vegetation models.
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Physiologically Based Models

Physiologically based response models 
incorporate sensitive aspects of individual 
species physiologies that influence foraging, 
nesting/reproduction, thermoregulation, 
and migration (Root 1988a and 1988b; 
Martin 2001; Reist et al. 2006; Bernardo 
et al. 2007; Hunter 2007). Broad-scale 
changes in species distributions have been 
tied closely to physiological constraints 
(Root et al. 2003). The aim is to relate 
the physiological traits and processes to 
climate change variables. These models can 
be used as part of general characterization 
models or as part of habitat models (Root 
et al. 2003; see earlier discussions). More 
complex models quantify interactions 
between key physiological variables and 
other variables, such as behavior, growth, 
and survival, and how important climate 
variables such as temperature affect 
interactions (Biro et al. 2007). However, 
complex models of these types are difficult 
to build over large areas because of the 
amount and type of data needed (e.g., data 
on movement patterns, behavior, growth, 
survival, etc.). Therefore, these models are 
most commonly built for specific species 
in specific geographies. We are unaware 
of any off-the-shelf software or tools that 
permit development of physiologically 
based climate response models.

Ecological Models

There are several ecological models that 
can be used to assess sensitivity and 
vulnerability of important ecological 
processes to climate change. Ecological 
response models evaluate how climate 
change variables affect fundamental 
ecological processes such as carbon and 

nitrogen fluxes, evapotranspiration, and 
plant nutrient cycling (Christensen et al. 
2008; Tague et al. 2009). The CENTURY 
model is a general model of plant–soil 
nutrient cycling and it has been used to 
simulate carbon and nutrient dynamics for 
different types of ecosystems, including 
grasslands, agricultural lands, forests, and 
savannas (Ojima et al. 1996). DayCent-
Chem, which was built off of the CENTURY 
model, predicts carbon and nitrogen 
dynamics within forests and leaching 
of different types of nitrogen cations 
from the forests to streams (Hartman et 
al. 2007). The MC1 model is a dynamic 
vegetation model that combines the 
CENTURY biogeochemical model with a 
biogeographical model, MAPSS (Mapped 
Atmospheric-Plant Soil System) (Bachelet 
et al. 2001). The Regional Hydro-Ecologic 
Simulation System (RHESSys) is a 
GIS–based hydro-ecological modeling 
framework, which simulates how water, 
carbon, and nutrients fluctuate through 
the environment on a watershed scale 
(Christensen et al. 2008). The PnET is a 
suite of three nested computer models, 
which provide a modular approach to 
simulating the carbon, water, and 
nitrogen dynamics of forest ecosystems 
(Aber et al. 1995). All of these have 
climate-related inputs that permit an 
analysis of the potential impacts of climate 
change on fundamental ecological and 
hydrological processes.

Some of these models can be downloaded 
from the Internet, including RHESsys 
(http://fiesta.bren.ucsb.edu/~rhessys/), 
PnET (http://www.pnet.sr.unh.edu/), and 
the CENTURY model (http://www.nrel.
colostate.edu/projects/century5/).
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Limitations of 
Response Models

All models are simplifications of the real 
world and, as such, have limitations in 
their use and applications. Most response 
models used in vulnerability assessments 
are simple models involving shifts in 
species ranges based on direct interactions 

with climate change (e.g., temperature 
tolerance), or based on shifts in habitats 
associated with climate change. These 
approaches are used because data on 
species attributes (e.g., demography, habitat 
preferences, etc.) and species and habitat 
distributions are available. However, these 
models tend to ignore other factors and 
species traits that can affect vulnerability to 
climate change. These include:

Ecological thresholds are important when considering response models because they represent situations 

where a small change in a driving variable, such as temperature or precipitation, leads to a disproportionately 

large response. When a system crosses such a threshold, the fundamental drivers and important processes can 

change abruptly, and these abrupt departures are often very difficult to include in models. In biological systems, 

climate-related threshold events include death of corals as a result of high water temperatures (Ward et al. 2007), 

widespread loss of piñon pines due to drought and high temperatures (Breshears et al. 2005), and the sudden 

eruption of spruce beetle in Alaskan forests when recent temperature increases permitted reproduction in a single 

season (Werner et al. 2006).

At the level of a single species, threshold events may result from a simple, direct effect of climate, such as exceeding 

a lethal temperature. At the ecosystem level, threshold events may be very broadly distributed, and they frequently 

involve positive feedbacks that amplify effects that otherwise may been a smaller perturbation to the system (U.S. 

CCSP 2009a). Wildfire behavior is a good example of a physical process with multiple thresholds (Peters et al. 

2004). When small, wildfire spread is determined largely by local fuel attributes. As fire extent and intensity 

increase, several thresholds are crossed and the processes that drive fire behavior are almost completely different. 

Very large wildfires generate their own surface winds that can drive a fire across areas with small fuel loads and 

little fuel connectivity. Models with fundamentally different structures, scales, and processes are needed to accurately 

simulate wildfires across this range of scales (Peters et al. 2004).

Thresholds pose special problems for conducting climate change vulnerability and risk assessments. We know 

little about the location, even approximately, of most ecological thresholds, while the consequences of crossing 

a threshold can be profound. A commonsense approach to thresholds is to focus on an opposing attribute—the 

resilience of an ecological system. Resilience is the ability of a system to retain characteristic processes and structures 

when subjected to change or disturbance. As mentioned previously, many recommendations for responding to 

climate change focus on increasing the resilience of systems (U.S. CCSP 2009a; Heller and Zavaleta 2009), and 

these actions will help avoid catastrophic thresholds. 

Box 4.2. Ecological Thresholds
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•  Changes in interactions between species, 
including competitive interactions and 
disease (Peterson et al. 2002; Murray et 
al. 2006).

•  Nonlinear, complex responses (e.g., 
thresholds or tipping points) associated 
with indirect interactions (Burkett et al. 
2005) (see Box 4.2).

•  Interactions between climate change and 
other important drivers or stressors such 
as land-use and land-cover change (Root 
and Schneider 2002).

•  Horizontal flow processes such 
as species migration (immigration/
emigration) that can determine a species’ 
ability to move across an area, either in 
direct response to climate change or as an 
indirect response to habitat shifts (McRae 
et al. 2008).

Another issue regarding response models is 
transferability to different geographies and 
scales. General relationships established 
using broad-scale response models may 
not hold up when assessing vulnerability 
of a species at a local scale (Frederiksen et 
al. 2004; Torti and Dunn 2005). Moreover, 
it may be difficult to transfer response 
models developed in one biophysical 
setting to another because of differences 
in local responses to climate variables 
(Primack et al. 2009).

Species selection may also affect the 
outcome of vulnerability assessments. 
Species with limited distributions have 
greater uncertainty in their response to 
climate change than species with broader 
ranges (Schwartz et al. 2006). Therefore, 
decisions on which species to include in 
a vulnerability assessment can affect the 
outcome and accuracy of the assessment.

Potential responses of species to climate 
change also may be affected by landscape 
context. Landscape context has been 
shown to be an important factor in species 
survivorship and response to stressors 
such as land use (Ricketts 2001; Baum et al. 
2004). Most species response models lack 
factors associated with landscape context 
and pattern. One exception is the PATCH 
model (Schumaker et al. 2004), which 
incorporates aspects of landscape pattern 
and species traits in assessing vulnerability. 
This model can be downloaded from the 
Internet (http://www.epa.gov/wed/pages/
news/03June/schumaker.htm).

Availability of 
Response Models

We highlighted a variety of models that can 
be downloaded from the Internet. Some of 
these models are relatively simple to use, 
while others require extensive data sets and 
adjustments to the models for individual 
applications. However, even simple models 
should be used carefully, with close 
examination of the caveats involved on any 
particular modeling approach. There is a 
need for a Web portal that provides links 
to the range of existing response models, 
and for enhanced simulation frameworks 
that facilitate linking (e.g., climate models 
to ecological response models). The 
Terrestrial Observation and Prediction 
System is an example of a sophisticated 
simulation framework that links historical 
climate data, remotely sensed data, climate 
projections, and response models (Nemani 
et al. 2009).


