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Recurrent decisionsRecurrent decisionsRecurrent decisionsRecurrent decisions

 Some decisions are repeated over 
time, at regular (or irregular) 
intervals

 What makes recurrent decisions What makes recurrent decisions 
different?
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Recurrent decisions: what’s different?Recurrent decisions: what’s different?Recurrent decisions: what’s different?Recurrent decisions: what’s different?

 Added complexity
C t d i i i fl f t t t ( )• Current decisions influence future state(s) 
and, therefore, future actions

• “Tomorrow is the price for yesterday ” (Bob• Tomorrow is the price for yesterday.  (Bob 
Seger 2007)

 Opportunity to learn
• Comparison of model-based predictions p p

with monitoring data permit learning 
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SDM for recurrent decisionsSDM for recurrent decisionsSDM for recurrent decisionsSDM for recurrent decisions
 How do the elements of SDM need to be 

th ht f f t d i i ?thought of for recurrent decisions?

• Objectives
• Actions
• Models
• Monitoring & Learning
• Optimization

66



ObjectivesObjectivesObjectivesObjectives
 As in SDM, objectives retain their primacy

• Objectives drive the development of other aspects of the Objectives drive the development of other aspects of the 
ARM framework

 For decisions by public agencies, there may be y p g , y
significant input from stakeholders in setting 
objectives
• A careful process for developing these objectives isA careful process for developing these objectives is 

often needed
• Balance regulatory responsibilities of agencies 

(legislative mandate) with current input from 
t k h ldstakeholders
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Dynamic objectivesDynamic objectivesDynamic objectivesDynamic objectives

 For recurrent decisions, the 
objectives may need to reflect the 
accrual of benefits and costs over 
time
• This can be explicit e g max H
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ActionsActionsActionsActions
 For recurrent decisions, some consideration needs to 

be given to how the set of alternative actions may 
h tichange over time

 Several scenarios
• Fixed set of alternatives
• Time-dependent set of alternatives (linked decisions)
• Dynamic set of alternatives (known dynamics)y ( y )

• i.e., decision today affects options tomorrow, in known way
• Developing an adaptive set of alternatives
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Evolution of objectives and actionsEvolution of objectives and actionsEvolution of objectives and actionsEvolution of objectives and actions

 “Double-loop learning”

• Experience with process and/or 
h i t k h ld ttit dchanges in stakeholder attitudes may 

make it useful to revisit objectives

• Alternative management actions may 
evolve as the problem is re-framedevolve as the problem is re-framed
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Models for recurrent decisionsModels for recurrent decisionsModels for recurrent decisionsModels for recurrent decisions
 Primary use: dynamic predictions

• What is the expected current return (value) of 
a particular action?

• How will the resource conditions change as a 
result of an action?  (Hence, how will future 
returns change?)returns change?)

1111



Dynamic modelsDynamic modelsDynamic modelsDynamic models
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Shorebird use of wetlandsShorebird use of wetlandsShorebird use of wetlandsShorebird use of wetlands

 Predict current use of impounded 
wetland, as a function of
• Action taken
• Current vegetation state

 Predict next year’s vegetation state Predict next year s vegetation state, 
as a function of
• Action taken
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But, we acknowledge uncertaintyBut, we acknowledge uncertaintyBut, we acknowledge uncertaintyBut, we acknowledge uncertainty

“…as we know, there are known knowns; “…as we know, there are known knowns; 
there are things we know we know. We also there are things we know we know. We also 
know there are known unknowns; that is to know there are known unknowns; that is to 
say we know there are some things we dosay we know there are some things we dosay we know there are some things we do say we know there are some things we do 

not know. But there are also unknown not know. But there are also unknown 
unknowns unknowns ---- the ones we don't know we the ones we don't know we 

don't know…”don't know…”
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Forms of uncertaintyForms of uncertaintyForms of uncertaintyForms of uncertainty
 Environmental variation
 Partial controllability 
 Partial observabilityPartial observability
 Structural uncertainty

• a form of epistemic uncertainty about• a form of epistemic uncertainty about 
the effects of management actions

• a focus of adaptive management• a focus of adaptive management
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Model (structural) uncertaintyModel (structural) uncertaintyModel (structural) uncertaintyModel (structural) uncertainty
 Ecological (structural) uncertainty

N t f t d i i t l t l• Nature of system dynamics is not completely 
known

• Competing ideas about system response toCompeting ideas about system response to 
management actions

 The focus needs to be on uncertainty 
about the effects of alternative actions
• Uncertainty that matters to your ability to 

achieve your objectives
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Multiple models in optimizationMultiple models in optimizationMultiple models in optimizationMultiple models in optimization

T=1500 T=800

Equal Model Weights
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MonitoringMonitoringMonitoringMonitoring
 Purposes

T th t t f th t f th• To assess the state of the system for the 
purpose of making state-dependent 
decisionsdecisions

• To determine if the objectives are being met
• To resolve uncertaintyy

 The development of the monitoring 
system should be tailored to these needs 
& driven by the decision context
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LearningLearningLearningLearning
 Learning

• Resolution of structural uncertainty over timey

 In a management setting
• Learning is not the ultimate goal, although it might be a g g g g

proximate goal
• How will learning be applied to subsequent decisions?

I th t l ith t i t In essence, the way to grapple with uncertainty:
• Make short-term predictions you can test, then reassess 

the situation
B t h l l f h l i ill h f t• But have a clear plan for how learning will change future 
decisions
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Model weightsModel weightsModel weightsModel weights
 Often, we can express structural uncertainty 

with a discrete set of alternative models

 Weights associated with those models reflect 
relative degrees of faithrelative degrees of faith

 Updating model weights
• Each model makes a prediction
• Comparison of those predictions to the observed result 

(monitoring) allows updating
• Bayes Theorem used to update based on comparison
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Adaptive Harvest ManagementAdaptive Harvest ManagementAdaptive Harvest ManagementAdaptive Harvest Management
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Continuous set of modelsContinuous set of modelsContinuous set of modelsContinuous set of models
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OptimizationOptimizationOptimizationOptimization
 As in SDM, the role of optimization is to 

fi d th ti th t b t hi thfind the action that best achieves the 
objectives, given the predictions from the 

d l( )model(s)

 For recurrent decisions, the optimization 
may need to be 
• Dynamic
• Adaptive
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Dynamic optimizationDynamic optimizationDynamic optimizationDynamic optimization

Equal Model WeightsEqual Model Weights
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Adaptive optimizationAdaptive optimizationAdaptive optimizationAdaptive optimization
 Actions have the potential to reduce 

t i tuncertainty
• Perhaps not equally

 Thus, we need to also anticipate how 
uncertainty will change over time, and 
how that will affect future decisions
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Adaptive optimizationAdaptive optimizationAdaptive optimizationAdaptive optimization
 Actions have the potential to reduce uncertainty, 

perhaps not equallyperhaps not equally 
 Thus, we need to also anticipate how uncertainty will 

change over time, and how that will affect future 
decisions 

 Adaptive optimization deals with the “dual-control 
problem”, balancing
• the short-term costs of learning, with the
• long-term benefits of learning (are “probing” actions 

warranted?)
Approaches to adapti e optimi ation Approaches to adaptive optimization:
• Discrete model set: carry information state (vector of model 

weights) as a state variable
• Models characterized by key parameter of general model:Models characterized by key parameter of general model: 

parameter value and variance are relevant
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Motivation for AMMotivation for AMMotivation for AMMotivation for AM
 All management decisions are made 

without perfect knowledgewithout perfect knowledge

 This uncertainty is what makes decisions This uncertainty is what makes decisions 
difficult

 Any management decision can 
potentially provide the chance to learnpotentially provide the chance to learn

 Iterated decisions can be adaptiveIterated decisions can be adaptive
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Adaptive ManagementAdaptive ManagementAdaptive ManagementAdaptive Management
 Seeks to optimize management 

decisions in the face of uncertaintydecisions in the face of uncertainty,

 using learning at one stage to influence using learning at one stage to influence 
decisions at subsequent stages,

 while considering the anticipated learning 
in the optimizationin the optimization.
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AM or SDM?AM or SDM?AM or SDM?AM or SDM?
 Is the decision recurrent?

 Is there structural uncertainty that matters in terms of 
management decisions? (do we need to learn?)

 Is there a monitoring program that is sufficiently 
focused and precise to discriminate among alternative 
hypotheses / models? (can we learn?)

 Is there an ability to change management strategy in 
response to what is learned? (can we adapt?)

 If “yes” to all, then AM
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Adaptive Management: processAdaptive Management: processAdaptive Management: processAdaptive Management: process
 Use dynamic optimization to select management 

action based on:
• (1) objectives
• (2) available management actions
• (3) estimated state of system(3) estimated state of system
• (4) models and their measures of credibility

 Action drives system to new state identified viaAction drives system to new state, identified via 
monitoring program

 Compare estimated and predicted system state toCompare estimated and predicted system state to 
update measures of model credibility

 Return to first stepReturn to first step
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Adaptive ManagementAdaptive ManagementAdaptive ManagementAdaptive Management
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Learning (“Adaptive”)Learning (“Adaptive”)Learning (“Adaptive”)Learning (“Adaptive”)
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Optimization (“Management”)Optimization (“Management”)Optimization (“Management”)Optimization (“Management”)
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Institutional StuffInstitutional StuffInstitutional StuffInstitutional StuffInstitutional StuffInstitutional StuffInstitutional StuffInstitutional Stuff



Public Public decisionsdecisionsPublic Public decisionsdecisions
 Many natural resource management decisions 

involve public agenciesp g

 So, many ARM applications need to involve 
the public inthe public in
• Problem framing
• Objectives setting

J i t f t fi di• Joint fact finding
• Implementation

Thi ll f ti i t d lib ti This calls for participatory, deliberative 
processes in which communication is 
paramount
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Framing the Framing the problemproblemFraming the Framing the problemproblem

 That is, recognizing the core 
elements of the decision and how 
they fit togethery g

 This is one of the hardest parts This is one of the hardest parts
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How to frame ARM problems?How to frame ARM problems?How to frame ARM problems?How to frame ARM problems?
 Ask what the decision is

 Identify the elements of the decision
• Objectives, actions, models, etc.

 Ask what impedes the decision
• What uncertainty makes the decisionWhat uncertainty makes the decision 

difficult?
• This is the motivation for ARM
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Iterative Iterative problem framingproblem framingIterative Iterative problem framingproblem framing
 Often, problem framing is iterative

• Start with a prototype structure• Start with a prototype structure
• Perform some initial analysis
• Revise the prototype

&• Implement & gain experience
• Revise the structure…

 It is sometimes difficult to understand the core 
issues of a problem until you’ve implemented a 

t t t t d hprototype structured approach
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DoubleDouble--loop loop learninglearningDoubleDouble--loop loop learninglearning
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SummarySummarySummarySummary
 AM involves recurrent decisions in which 

predicted outcomes are uncertainp

 Of the 4 flavors of uncertainty, the focus in AM 
is on structural uncertaintyis on structural uncertainty

 Learning in AM might be passive or active

 In practice, AM faces many obstacles (as does 
any informed approach); requires persistenceany informed approach); requires persistence 
and openess to double-loop learning
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