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L i Learning
• What does it mean in ARM?
• How is it done?

 What affects rate of learning?
• Models, monitoring, approach to 

optimization
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What is Learning?What is Learning?gg

 Dictionary definitions usually include “acquiringDictionary definitions usually include acquiring 
knowledge”

 Scientific definition might include 
“accumulation of faith (or lack of faith) ( )
associated with the predictions of competing 
hypotheses and their corresponding models”

 Science is a progressive endeavor that 
depends on learning (e.g., Descartes 1637)
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Models and LearningModels and LearningModels and LearningModels and Learning

 Basic criterion by which a management Basic criterion by which a management 
model is judged is its ability to predict 
system response to management actionssystem response to management actions

 In case of multiple discrete models: 
develop model “weights” reflecting 
relative degrees of faith in the models of 
the model set



For a Given Model SetFor a Given Model SetFor a Given Model SetFor a Given Model Set

Weights assigned to each model add to 1 0 Weights assigned to each model add to 1.0 
(thus relative credibility)

 Models with higher weight have greater 
credibility and will have more influence over y
future management decisions

 If a robust predictive model is in the set its 
weight should go to 1.0 over time.
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What is learning in ARM?What is learning in ARM?What is learning in ARM? What is learning in ARM? 

R d ti f t t l t i t i Reduction of structural uncertainty; i.e., 
discriminating among competing models of 
system response to management actionssystem response to management actions 

A li h d b i d l b d Accomplished by comparing model-based 
predictions against estimates of state variables 
and rate parameters (from monitoring program)and rate parameters (from monitoring program)  
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Why bother to learn in ARM?Why bother to learn in ARM?Why bother to learn in ARM?Why bother to learn in ARM?

St t l t i t f tl d Structural uncertainty frequently reduces 
returns that are possible for a managed system

 For any system, this reduction can be 
assessed (EVPI)assessed (EVPI)

If EVPI i l th l i i i t t If EVPI is large, then learning is important, as 
greater returns can be realized if uncertainty is 
reducedreduced 
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How does learning occur within ARM?How does learning occur within ARM?How does learning occur within ARM?How does learning occur within ARM?

 For a given action predictions made For a given action, predictions made 
under each model

 The system response of the implemented 
decision is monitored

 Model weights are updated via Bayes’ 
Formula
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Initial weight valuesInitial weight valuesInitial weight valuesInitial weight values

S bj ti l Subjectively 
• Politically
• Based on expert opinion

B d hi i l d Based on historical data, e.g.,  
• AIC weights (Burnham and Anderson 2002)
• Pick previous date, start with equal weights, 

and update to present time
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Weights updated as function ofWeights updated as function ofWeights updated as function ofWeights updated as function of

The c rrent eight (prior probabilit ) The current weight (prior probability)

 New information (i e the difference between New information (i.e., the difference between 
model predictions and what actually occurs, 
based on monitoring results)g )

 The new weight is called a posterior probability
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Bayes’ FormulaBayes’ FormulaBayes  FormulaBayes  Formula

New weight of model i New weight of model i 

(Old weight of model i) *(Old weight of model i) * 

likelihood of new datalikelihood of new data
according to model i)
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Bayes’ FormulaBayes’ FormulaBayes  FormulaBayes  Formula

pt 1(model i | responset 1) =pt+1(model i | responset+1) 

p (model i ) P(response | model i)pt(model i ) P(responset+1 | model i)

 p (model j ) P(response | model j) pt(model j ) P(responset+1 | model j)
j
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Process furthers learning whenProcess furthers learning whenProcess furthers learning whenProcess furthers learning when

A good appro imating model is in the model A good approximating model is in the model 
set (i.e., a model that predicts well across the 
state space)p )

 Predictions from each model fairly represent y p
the idea that generated them

 An adequate monitoring program is in place for 
model comparison/discrimination



Model predictions should:Model predictions should:Model predictions should:Model predictions should:
 Be unbiased under the ecological hypothesis 

they represent
• Bias could change direction of weight changes and 

lead to erroneous conclusion of poor predictivelead to erroneous conclusion of poor predictive 
ability

 Include all pertinent uncertaintiesInclude all pertinent uncertainties
• Model-based stochastic variation
• Parametric uncertainty – sampling variation due to y p g

estimation
• Partial observability of resulting state (monitoring 

bias/imprecision)bias/imprecision)



Real World examples – two modelsReal World examples – two modelsReal World examples two modelsReal World examples two models

 Density independence/dependence inDensity independence/dependence in 
recruitment, survival, abundance

 Wood thrush abundance as a linear vs. logistic 
function of habitat quantity

 Shorebird use of impoundment dependent on 
percent that is mudflatpercent that is mudflat

 Beaver trapping effort function of gas prices
16

 Beaver trapping effort function of gas prices



Generic example – two modelsGeneric example – two modelsGeneric example two modelsGeneric example two models

A l i Assume equal priors 
• each model gets weight of 0.50

 Compute posteriors (i.e., update weights) 
based on comparison of predicted state (e gbased on comparison of predicted state (e.g., 
population size) with resulting observed state. 
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Model Predictions
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Model Predictions
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Bayes’ FormulaBayes’ FormulaBayes  FormulaBayes  Formula

pt+1(model 1 | responset+1) =

0.5 * 1/60.5  1/6

0.5 * 1/6  +  0.5 * 1/5
= 0.45
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Model Predictions
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Model Predictions
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Bayesian Updating- model “set” defined 
b k t f i l d l
Bayesian Updating- model “set” defined 
b k t f i l d lby key parameter of a single modelby key parameter of a single model

pt+1( | datat+1) =pt+1( | datat+1) 
pt() P(datat+1 | ) 

 pt() P(datat+1 | ) d
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Practical aspects of Bayesian updatingPractical aspects of Bayesian updating

 Conjugacy: “The property that the posterior Conjugacy: The property that the posterior 
distribution follows the same parametric form 
as the prior distribution” (Gelman et al. 2000)p ( )
• E.g., a Normal prior and likelihood yields a Normal posterior
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Practical aspects of Bayesian updatingPractical aspects of Bayesian updating

 Often the form of the prior in combination with the Often the form of the prior in combination with the 
likelihood results in a posterior that cannot be solved 
analytically and other methods are required for 
evaluation; e.g., MCMC (Markov chain Monte Carlo) 
methods
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Beta Distribution:Beta Distribution:Beta Distribution:Beta Distribution:

 For α>0, β >0, f(x) restricted to 0 - 1 interval

 Useful for modeling proportions (e.g., survival or harvest rates)

 Conjugate prior for the Binomial distribution where x is the 
probability of success
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Beta-Binomial example: Estimating survival rates
i h i i f i h S 0 7 S(SE) 0 1

Beta-Binomial example: Estimating survival rates
i h i i f i h S 0 7 S(SE) 0 1with prior information where S = 0.7, S(SE) = 0. 1with prior information where S = 0.7, S(SE) = 0. 1

U th d f t t if i Use method of moments to specify prior
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Apply n = 20 transmitters in year 1, 
18 i 2y = 18 survive to year 2
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Evaluate PosteriorEvaluate Posterior
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Evaluate PosteriorEvaluate Posterior
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Actual ExampleActual ExampleActual ExampleActual Example

Adaptive Harvest 
Management for Mid-Management for Mid

continent Mallard Ducks





How fast does learning occur?How fast does learning occur?How fast does learning occur?How fast does learning occur?



What affects the speed of learning?What affects the speed of learning?What affects the speed of learning?What affects the speed of learning?

 Model structure parameter values Model structure, parameter values
• Does the set include a good approximating 

model?
• Are parameter estimates Precise? Unbiased?

 Amount of noise (stochasticity) in the system
P ti l b bilit Partial observability
• Bias and precision in monitoring 

 Approach to optimization Approach to optimization
 Spatial replication
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M d l P di tiM odel Predictions
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Model Weights
(Predictions for Model 1 negatively biased)
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Model Weights
(Predictions for both models negatively biased)
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Can we measure the cost of poor Can we measure the cost of poor 
monitoring?monitoring?



Accounting for the hidden costs of measurement uncertainty in 
wildlife decision-making through monitoring designwildlife decision making through monitoring design

Clinton T. Moore and William L. Kendall
USGS P Wildlif R h CUSGS Patuxent Wildlife Research Center
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State-specific decision makingState-specific decision makingState specific decision makingState specific decision making

System states
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System states
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conditions of a managed system
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State-specific decision makingState-specific decision makingState specific decision makingState specific decision making
The decision you make depends 

5A

Decision

Reward

System State

y p
on how you see the system

Case 1: True state is observable
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State-specific decision makingState-specific decision makingState specific decision makingState specific decision making
The decision you make depends

5A

Decision

Reward

System State

The decision you make depends 
on how you see the system

Case 2: True state not observable
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Partial observability IPartial observability IPartial observability IPartial observability I

L d t d ti i t Leads to reduction in management 
returns
• Best decision for apparent state differs 

from that for true, unknown state
• Management opportunity cost of partial 

observabilityy
• Measurable in units of the resource
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Partial observability and management Partial observability and management 
returnreturn
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Partial observability IIPartial observability IIPartial observability IIPartial observability II

 Leads to reduction in management 
returnsreturns

U d t t l ( d l) t i t• Under structural (model) uncertainty, 
partial observability can interfere with 
bilit t l d l t i t dability to resolve model uncertainty and 

improve management
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Partial observability and model 
id ifi i
Partial observability and model 
id ifi iidentificationidentification
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Monitoring Program Costs: 
C id ti
Monitoring Program Costs: 
C id tiConsiderationsConsiderations

C f Cost of monitoring
 Costs of not monitoring or monitoringCosts of not monitoring or monitoring 

poorly:
• Poor estimates of state for decisions• Poor estimates of state, for decisions
• Slow/improper resolution of structural 

uncertaintyuncertainty
• Poor estimation of model parameters
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Monitoring effort should be formally cast 
d i i i bl (O )

Monitoring effort should be formally cast 
d i i i bl (O )as a management decision variable (Oz)as a management decision variable (Oz)

 Recurring decisions about:Recurring decisions about:
1. Management action
2. Monitoring intensity

 Objective:
• Include both resource conservation returns and survey costs via use 

of common currency, utility thresholds, whatevery y

 Could lead to adaptive monitoring design:
• Value of reducing uncertainty is high  monitoring intensity increases

V l f d i t i t i l it i i t it d• Value of reducing uncertainty is low   monitoring intensity decreases
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Approach to OptimizationApproach to OptimizationApproach to OptimizationApproach to Optimization



Approaches to optimizationApproaches to optimizationApproaches to optimizationApproaches to optimization

Passi e ARM Passive ARM
• decision made based on management objectives and current 

information state (i.e. model weights)

 Active ARM
• Simultaneous/concurrent Active ARM

• Decision made based on management objectives, currentDecision made based on management objectives, current 
information state and anticipated benefit of learning (Dual 
Control)

• Sequential Active ARM
• (1) Experimentation (learn quickly for a set of steps) with 

little consideration for resource returns
• (2) Passive ARM under “best” model(s) based on (1)
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Speed of learning also function of 
bj i h i i i

Speed of learning also function of 
bj i h i i iobjectives, approach to optimizationobjectives, approach to optimization

P i l Ad tiPassively Adaptive

Actively AdaptiveActively Adaptive
(anticipates benefit of learning
to mgmt. objectives)

Experimentation
52
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Can learn faster with spatial replicationCan learn faster with spatial replicationCan learn faster with spatial replicationCan learn faster with spatial replication

Action A

Mgmt Area 1

Action B

Mgmt Area 2

Action B

Mgmt Area 3

Action A

Mgmt Area 4
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Robustness: model vs. model setRobustness: model vs. model setRobustness:  model vs. model setRobustness:  model vs. model set
 Suggestion: don’t discard a hypothesis too gg yp

quickly based on poor model predictive 
performance (model may not properly capture 
hypothesis, may be constructed with poor ypo es s, ay be co s uc ed poo
parameter estimates, etc.)

If i ht bi ( b i If weights are ambiguous (e.g. bouncing 
around over time), but model set predicts well, 
then no need to panic

 If model set predicts poorly, then really need to 
revise or add models (double loop learning)
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Conclusions About Learning: IConclusions About Learning: IConclusions About Learning: IConclusions About Learning: I

Learning is hallmark of ARM Learning is hallmark of ARM

 It is not appropriate to label a management It is not appropriate to label a management 
program as “adaptive” without  a clear 
mechanism for incorporation of learning to p g
improve subsequent management

 The purpose of learning in ARM is to provide 
increased returns by improving predictions 
across entire state space
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Conclusions About Learning: IIConclusions About Learning: IIConclusions About Learning: IIConclusions About Learning: II
 Bayes formula is natural vehicle for “learning” in ARM 

( d i i )(and in science)
 Rate of “learning” depends on many factors, e.g.,

• Stochastic variation of model predictionsp
• Variation among model-based predictions for members of 

model set
• Partial observability
• Approach to optimization

 True learning depends on how well at least one 
member of the model set captures underlyingmember of the model set captures underlying 
mechanisms (so we still need to think)
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Why bother to learn in ARM?Why bother to learn in ARM?Why bother to learn in ARM?Why bother to learn in ARM?

 Expected value of perfect information (EVPI)Expected value of perfect information (EVPI) 
compares:
• weighted average of model-specific e g ed a e age o ode spec c

maximum values, across models 
(omniscience)

• maximum of an average of values (based on 
average model performance; value under 

)best nonadaptive decision)



Why bother to learn in ARM?Why bother to learn in ARM?Why bother to learn in ARM?Why bother to learn in ARM?


