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Learning in Adaptive Management 
Chapter 7 

 
Developed by:  William L. Kendall, James D. Nichols, Clinton T. Moore, and 

G. Scott Boomer 
 
 
Session Objectives: By the end of this session, 

participants will be able to: 
 
• Discuss what learning means in Adaptive Resource 

Management (ARM) 
• Describe how learning is accomplished 
 
 
Outline 
• Learning 

o What does it mean in ARM? 
o How is it done? 

 
• What affects rate of learning? 

o Models, monitoring, approach to optimization 
 
 
What is learning in an uncertain world? 
• Dictionary definitions usually include “acquiring knowledge” 
• Scientific definition might include “accumulation of faith (or lack of 

faith) associated with the predictions of competing hypotheses and 
their corresponding models” 

• Science is a progressive endeavor that depends on learning (e.g., 
Descartes 1637) 
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Models and Learning 
• Basic criterion by which a management model is judged is its ability 

to predict system response to management actions 
• In case of multiple discrete models: develop model “weights” 

reflecting relative degrees of faith in the models of the model set 
 
• For a given model set 

o Weights assigned to each model add to 1.0 (thus relative 
credibility) 

o Models with higher weight have greater credibility and will have 
more influence over future management decisions 

o If a robust predictive model is in the set its weight should go to 
1.0 over time. 
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What is learning in ARM? 
• Reduction of structural uncertainty; i.e., discriminating among 

competing models of system response to management actions  
 
• Accomplished by comparing model-based predictions against 

estimates of state variables and rate parameters (from monitoring 
program)   

 
 
 
 
Why bother to learn in ARM? 
• Structural uncertainty frequently reduces returns that are possible for 

a managed system 
 
• For any system, this reduction can be assessed (EVPI) 
 
• If EVPI is large, then learning is important, as greater returns can be 

realized if uncertainty is reduced  
 
 
 
 
How does learning occur within ARM? 
• For a given action, predictions made under each model 
 
• The system response of the implemented decision is monitored 
 
• Model weights are updated via Bayes’ Formula 
 



Learning in Adaptive Management 
Adaptive Management:  Structured Decision Making for Recurrent Decisions 

 

April/May 2012 Learning 7 – 4 USGS & USFWS-NCTC 

Initial weight values 
• Subjectively 

o Politically 
o Based on expert opinion 

 
• Based on historical data, e.g.,  

o AIC weights (Burnham and Anderson 2002) 
o Pick previous date, start with equal weights, and update to 

present time 
 
 
Weights updated as function of 
• The current weight (prior probability) 
 
• New information (i.e., the difference between model predictions and 

what actually occurs, based on monitoring results). 
 
• The new weight is called a posterior probability 
 
 
 
Bayes’ Formula 
 
In words: 
 

New weight of model i  ∝ 
 
(Old weight of model i) * (likelihood of new data according to model i) 

 
 
 
Formula: 
 

pt+1(model i | responset+1) = 
 
  pt(model i ) P(responset+1 | model i)  
∑j pt(model j ) P(responset+1 | model j) 
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Process advances learning when 
• A good approximating model is in the model set (i.e., a model that 

predicts well across the state space) 
 
• Predictions from each model fairly represent the idea that generated 

them 
 
• An adequate monitoring program is in place for model 

comparison/discrimination 
 
 
Model predictions should: 
• Be unbiased under the ecological hypothesis they represent 

o Bias could change direction of weight changes and lead to 
erroneous conclusion of poor predictive ability 

 
• Include all pertinent uncertainties 

o Model-based stochastic variation, 
o Parametric uncertainty – sampling variation due to estimation. 
o Partial observability of resulting state (monitoring 

bias/imprecision) 
 
 
Real World Examples – two models 
• Compensatory versus additive mortality in hunted species 
• Density independence/dependence in recruitment, survival, 

abundance 
• Wood thrush abundance as a linear vs. logistic function of habitat 

quantity 
• Shorebird use of impoundment dependent on percent that is mudflat? 
• Beaver trapping effort as a function of gas prices? 
 
 
Generic Example – two models 
• Assume equal priors 

o each model gets weight of 0.50 
• Compute posteriors (i.e., update weights) based on comparison of 

predicted observed state (e.g., population size) with resulting 
observed state. 
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Model Predictions
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Bayes’ Formula 

pt+1(model i | responset+1) = 
 

 0.5 * 1/6  
0.5 * 1/6 + 0.5 * 1/5 =  0.45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model Predictions

0

0.05

0.1

0.15

0.2

0.25

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Population Size (thousands)

Pr
ob

ab
ili

ty
 D

en
si

ty

Model 1

Model 2

Wt = 45% Wt = 55%Wt = 45% Wt = 55%

Model Predictions

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Population Size (thousands)

Pr
ob

ab
ili

ty
 D

en
si

ty

Model 1
Model 2

Wt = 82% Wt = 18%Wt = 82% Wt = 18%

(normal distributions - some uncertainty)



Learning in Adaptive Management 
Adaptive Management:  Structured Decision Making for Recurrent Decisions 

 

April/May 2012 Learning 7 – 8 USGS & USFWS-NCTC 

 
Bayesian Updating – continuous case 
• Model “set” defined by key parameter of a single model 
 

pt+1(θ | datat+1) = 
 

    pt(θ) P(datat+1 | θ)  
∫θ pt(θ) P(datat+1 | θ) dθ 

 
 
• Practical aspects of Bayesian updating 
• Conjugacy: “The property that the posterior distribution follows the 

same parametric form as the prior distribution” (Gelman 2000) 
o E.g., a Normal prior and likelihood yields a Normal posterior 
o A beta prior with binomial likelihood yields a beta posterior 
o A gamma prior with Poisson likelihood yields a gamma 

posterior 
• Often the form of the prior in combination with the likelihood results in 

a posterior that cannot be solved analytically and other methods are 
required for evaluation; e.g., MCMC (Markov chain Monte Carlo) 
methods 

 
Beta distribution 
 

 
 

 For α>0, β >0, f(x) restricted to 0 - 1 interval 
 Useful for modeling proportions (e.g., survival or harvest rates) 
 Conjugate prior for the Binomial distribution where x is the probability 

of success 
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Beta distribution 

 
 
Beta-Binomial example: 
Estimating survival rates with prior information where S = 0.7, SES = 0.1 
 Use method of moments to specify prior distribution 
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Prior Distribution 

 
Do Experiment 
 Apply n = 20 transmitters in year 1,  
 Observe y = 18 survive to year 2, 
 Assume y ~ Binomial (n=20, S) 
 Specify Posterior 
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Evaluate Posterior 
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Actual Example:   
Adaptive Harvest Management for Mid-continent Mallards 
 

 
 

How fast does learning occur? 
 
What affects the speed of learning? 
• Model structure, parameter values 

o Does the set include a good approximating model? 
 i.e., a robust predictor over the state space 

o Are parameter estimates 
 Precise? 
 Unbiased? 

• Amount of noise (stochasticity) in the system 
• Partial observability  

o Bias and precision in monitoring 
• Approach to optimization 
• Spatial replication 
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Can we measure the cost of poor monitoring? 

 
Driving in Fog:  Accounting for the hidden costs of measurement 

uncertainty in wildlife decision-making through adaptive monitoring design 
Clinton T. Moore and William L. Kendall 

USGS Patuxent Wildlife Research Center 
 
 
State-specific decision making 
 
System states 
• Current physical and biological conditions of a managed system 

o e.g., number of bird pairs and number of nest cavities 
 
Decisions 
• Candidate management actions 

o e.g., treatments to increase nest cavity abundance 
 
Rewards 
• Expected management gain for given decision and system state 

o e.g., brood production 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14

8

3

14

8

3

State 2

A

B

C

5

10

15

5

10

15

State 1

A

B

C

Decision
Reward

System State



Learning in Adaptive Management 
Adaptive Management:  Structured Decision Making for Recurrent Decisions 

 

April/May 2012 Learning 7 – 16 USGS & USFWS-NCTC 

 
The decision you make depends on how you see the system 

Case 1: True state is observable 
Decision “A” is best 

Decision gain of 14 units 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The decision you make depends on how you see the system 

Case 2: True state not observable 
Decision “C” is apparently best 

Decision cost of 14 - 3 = 11 units 
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Partial observability 
• Leads to reduction in management returns 

o Best decision for apparent state differs from that for true, 
unknown state 

o Management opportunity cost of partial observability 
 Measurable in units of the resource 

 
 
 
Partial observability and management return 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Partial observability 
• Leads to reduction in management returns 

o Under structural (model) uncertainty, partial observability can 
interfere with ability to resolve model uncertainty and improve 
management 
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Partial observability and model identification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Monitoring Program Costs:  Considerations 
• Cost of monitoring 
 
• Costs of not monitoring or monitoring poorly: 

o Poor estimates of state, for decisions 
o Slow/improper resolution of structural uncertainty 
o Poor estimation of model parameters 

 
Monitoring effort should be formally cast as a management 

decision variable? 
• See Hauser et al. (2006, 2009), Moore & McCarthy (2010) 
• Recurring decisions about: 

1. Management action 
2. Monitoring intensity 

 
• Objective: 

o Include both resource conservation returns and survey costs 
via use of common currency, utility thresholds, whatever 

 
• Adaptive monitoring design 

o Value of reducing uncertainty is high 
 → monitoring intensity increases 

o Value of reducing uncertainty is low 
 → monitoring intensity decreases 
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Approach to Optimization 
 
Approaches to optimization 
• Passive ARM 

o Decision made based on management objectives and current 
information state (i.e., model weights) 

 
• Active ARM 

o Simultaneous/concurrent Active ARM 
 Decision made based on management objectives, current 

information state and anticipated benefit of learning (Dual 
Control). 

o Sequential Active ARM 
 (1)  Experimentation (learn quickly for a set of steps), with 

little consideration for resource returns, followed by  
 (2)  Passive ARM under “best” models based on (1) 
 e.g., McCarthy & Parris (2008) 

 
 
Speed of learning also artifact of objectives, approach to 

optimization 
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Can learn faster with spatial replication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Robustness of a model vs. robustness of the model set 
• Suggestion: don’t discard a hypothesis too quickly based on poor 

model predictive performance (model may not properly capture 
hypothesis, may be constructed with poor parameter estimates, etc.) 

 
• If weights are ambiguous (e.g., bouncing around over time) but model 

set predicts well, then no need to panic 
 
• If model set predicts poorly, then really need to revise or add models 

(double-loop learning) 
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Conclusions 
 

• Learning is hallmark of ARM 

 

• It is not appropriate to label a management program as 

“adaptive” without  a clear mechanism for incorporation of 

learning to improve subsequent management 

 

• The purpose of learning in ARM is to provide increased 

returns by improving predictions across entire state space 

 

• Bayes’ formula is natural vehicle for “learning” in ARM (and 

in science) 

 

• Rate of “learning” depends on many factors, e.g., 

o Stochastic variation of model predictions 

o Variation among model-based predictions for members 

of model set 

o Partial observability 

o Approach to optimization 

 

 True learning depends on how well at least one member of 

the model set captures underlying mechanisms (so we still 

need to think) 


