A Frame-Based
Paradigm for Dynamic
Ecosystem Models

AM. Starfield
Department of Ecology, Evolution & Behavior
University of Minnesota
St. Paul, Minnesota 55108

D.H.M. Cumming and R.D. Taylor
WWF Multispecies Animal Production Systems Project
Harare, Zimbabwe

M.S. Quadling
Department of Computer Science
University of Minnesota
Minneapolis, Minnesota 55455




ABSTRACT. By linking the ecological
concept of a system state with the Al
construct of a frame, one obtains a
new paradigm for constructing
models of ecosystem dynamics. The
key aspect of this paradigm is that it
partitions the temporal dynamics of
the system; only one simple model is
operational at any time. When the
assumptions underlying that model
are violated, a demon invokes rules
for switching to a new frame and,
hence, new model. A model toinves-
tigate interactions among rainfall,
elephants. and fire in a Brachystegia
woodland in Zimbabwe illustrates this
approach. It shows how the paradigm
provides a structure that simplifies
the construction of a model. In par-
ticular, the introduction of qualita-
tive variables, such as cool or hot
fires, offers a functional approach
that facilitates model construction.
The example shows how a relatively
simple model can lead to complex
and realistic results, with unantici-
pated and interesting implications for
management. This paradigm could
lead to bettercommunication between
scientists and resource managers. It
could also provide an appropriate syn-
tax for modeling, at a certain level of
resolution, the effects of climate
change.
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M ost problems in resource management are embedded
in a natural system that is driven by extemnal forces (such as
rainfall, storms, fires, sea currents, or upwelling) and char-
acterized by intenal dynamics that may include processes
such as competition, succession, predation, and herbivory.
On the other hand, many resource management models are
concemed only with a single species such as a forest stand,
an age-structured mammal population, or a fish stock.

Itis not hard to find reasons why the system in which the
resource is embedded is so often ignored by modelers;
system models are notoriously difficult and time-consuming
to build and the data to support them are seldom available.
The prudent modeler may conclude that any benefit to be
gained from simulating the system dynamics will be lost in
the uncertainty and complexity of the exercise.
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In this paper we introduce a modeling para-
digm that facilitates the building of parsimoni-
ous system models. It draws on concepts and
constructs from expert systems technology, but
within the context of a dynamic simulation
model. At the heart of the paradigm is a simple
but powerful idea, one that makes connections
between the ecological concept of a system
state and the Al construct of a frame.

States, Frames, and
Frame-Based Models

We limit our attention in this paper to a
single spatially distinct region (although we
suggest, at the end of the paper, how the para-
digm could be extended to a patchwork of
different interacting regions). If we were able to
monitor the system dynamics for a very long
time, we would be able to recognize distinctive
states of the system. For example, a forest
ecologist might recognize different stages of
succession. A field ecologist might notice dif-
ferent functional attributes (e.g., nutrients are
limiting in one state, while sunlight is limiting
in another) and use them to define the states of
the system (Noble 1987, Noble and Slatyer
1980). A theoretician might plot a trajectory of
the dynamics in phase space, identify regions
associated with attractors, and 1abel these regions
as the states of the system.

Modelers have previously made use of this
kind of intuitive definition of system states. One
example would be a markov matrix succession
model (Moore 1990, Usher 1981). Another and
more pertinent example is offered by Westoby
et al. (1989). They use functional terms such as
“grassland with many shrub seedlings” and
“dense shrub cover, little grass” to characterize
the states of a rangeland. They go onto develop
conceptual state-and-transition models, where
the transitions from one state to another are
triggered by events such as “fire, following
" exceptional rains to provide the fuel of
ephemerals.”

These conceptual models offer guidance to
rangeland managers, but neither markov mod-

2

els nor state-and-transition models attempt to
simulate the underlying processes. We cannot
ask these models how the system might respond
to specific changes in the driving variables or to
sporadic environmental events. To retain the
conceptual simplicity of a state-and-transition
model, but provide it with dynamic simulation
capabilities, we draw on the Al concept of a
frame.

In Al texts (such as Winston 1992) a frame
is defined as an object possessing various types
of slots or fields. Slots can be static (they con-
tain data values), dynamic (containing proce-
dures for computing data values or initiating
actions), or they can provide connections to
other frames. Frames can also have demons,
which are procedures that watch for a specific
condition and perform some action when it
occurs. For example, a demon could provide
missing data or update a slot under certain
conditions. A frame is akin to a record, but
while records are passive, a frame isdesigned to
be both dynamic and active. A frame system is
anetwork of frames connected by relations and
organized into a hierarchy, with specialized

. slots providing the links. Frames low in the

hierarchy automatically inherit properties of
higher-level frames.

In our proposed modeling paradigm, we
represent each state of the system by a frame.
Slots within each frame contain simple
mechanistic models of the key processes for the
corresponding state. Demons watch for a
combination of conditions that precipitate a
switch from one frame to another and, when
they are met, activate slots that effect the tran-
sition. Other demons may remember the values
of variables prior to a frame transition, or ini-
tialize variables in the new frame.

The key components of the frame-based
modeling paradigm are:

® The temporal system dynamics is partitioned
into a setof states or frames. The choice of frames
will depend on the purpose of the model, the way
in which the system functions, or whether one set
of frames rather than another facilitates the process
of constructing a model.

e Independent models are constructed for each
frame. These models simulate the processes that
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have been identified as the key processes of
interest within that frame.

® Rules are established for switching from one
frame to another.

It follows that at any time during the simulation,
only one model or set of simple models is
operational. If the assumptions underpinning
these models are violated, another model or set
of models takes over.

The Construction of a
Frame-Based Dynamic Model

The following is a step-by-step account of
how a frame-based dynamic model is con-
structed:

1. Asin all modeling endeavors, the first step is to
identify the objectives of the model.

2. Next the driving (or input) variables are identi-
fied.

3. Then the frames are chosen. As indicated above,
they could be chosen on the basis of successional
stages, or recognizable alternative stable states
that the system may occupy, Oor on a more
mathematical basis with each frame representing
a region of phase space around an attractor.
Alternatively, the frames could be selected be-
cause they make practical sense from a man-
agement perspective, or simply because the
model-builders find it useful to partition the
dynamics in a certain way.

4. Next, the key variables and processes in each of
the frames are identified. The objectives of the
model and definition of the frames provide the
structure for deciding which are the key variables
and processes within each frame.

S The pathways between frames are determined
and rules constructed for switching from one
frame to another.

6. Finally, a dynamic model is built for each frame.
These models could be conventional numerical
models or qualitative rule-based models (Starfield
1990, Starfield et al. 1989, Widman et al. 1989)
or a combination of the two.
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An Example: Brachystegia
Woodlands in Zimbabwe

As an example, we will consider the interac-
tions between elephants and fire in the protected
areasof the Zambezi escarpments in Zimbabwe,

Large areas of woodland dominated by
Brachystegia boehmii on the Zambezi escarp-
ment have been changed to tall grasslands or to
bushlands dominated by Combretum apiculatum
overthelastthree decades (Anderson and Walker
1974; Guy 1981, 1989; Taylor 1979; Thomson
1975). The changes have resulted both from
increasing numbers of elephant and declining
range and hence escalating densitiesin protected
areas (Cumming 1982). Management options
for retaining or recovering woodlands are control
of elephant numbers and fire, but in practice
these have seldom been applied in a sufficiently
timely or consistent manner to achieve the de-
sired effects (Cumming 1981a, b).

A model with multiple stable states has been
built to investigate interactions between el-
ephants and fire in East African woodlands
(Dublin et al. 1990). What is needed here,
however, is amodel that can guide management
of these ecosystems in the face of annual vari-
ability in rainfall, the hazards of uncontrolled
fires, and increasing elephant populations.

Experience suggests that a Brachystegia
woodland can sustain itself with small elephant
populations. Larger populations of elephants,
possibly aided by fire, can drive the system
from woodland to a grassiand interspersed with
Brachystegia seedlings and shrubs. The grass-
land, in tum, can regenerate the woodland,
provided it is protected from hot fires and el-
ephant densities are low. However, fire and
larger elephant densities can suppress
Brachystegia shrubs and eventually drive the
grassland to a bushland where Combretum and
other fire-resistant shrubs compete with the
Brachystegia shrubs. Once the fire-resistant
shrubs have become established, a retumn to
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grassland is prevented, although over a long
period (of about 50 years) Brachystegia shrubs
might push through the cover to dominate the
canopy and return the system 10 a Brachystegia
woodland again.

The Model

The objectives of the model are:

® To draw on the available ecological knowledge
and/or data in order to compare the effects of
various management strategies onatime-scale of
2510 100 years.

® To explore the interaction between ongoing
processes and events that drive the system, again
from a management perspective.

The time step chosen for this model is one
year. The driving variables are:

elephants: aqualitative variable with levels0, 1,2,
3, or 4 (corresponding to no elephants,
densities of about 0.25 per sq km, 0.50
per sq km, 0.75 per sq km, and 1.00 per
sq km or higher);

annual rainfall with two states, Jow and
high ;

can be on or off, representing the in-
ception of a fire (either nawrally or
deliberately);

canbeearly orlate, representing thetime
(during the dry season) when a fire
occurs.

rainfall:

match:

burntime:

The driving variable maich implies that an at-
tempt is made to ignite a fire, but it does not
necessarily follow that there is sufficient fuel to
sustain it. We therefore introduce a variable
fuel-load onascaleof 0to 6 (or very low to very
high ). Depending on fuel-load (and also on
whether the fire occurs in the early or late dry
season), the fire will be either cool or hot. We
introduce the qualitative variable fire type with
three states (0= nofire, 1 = coolfire,and 2 = hot
fire). Although these variables are common to
all frames, the rules that govern them are not;
fuel accumulates and fires develop in different
ways in the different frames.

Based on current understanding of the long-
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term dynamics, it was decided to introduce
three frames: Woodland, Grassland and
Bushland. The Woodland frame represents a
mixed woodland dominated by Brachystegia
boehmii. The Grassland frame represents a tall
grassland with occasional Brachystegia trees
and a shrub layer dominated by Brachystegia
shrubs together with Combretum and other
species of shrubs and emergents. The Bushland
frame represents a mixed scrubland growing
through to wooded bushland with Combretum
apiculatum and other Combretum species
dominating.

The Bushland frame. It is easiest to de-
scribe the model working backwards from the
simplest frame (Bushland) to the most complex
(Woodland). Since the time scale of our ob-
jectives is 25 to 100 years, we chose to ignore
the possible 50-year transition from Bushland
to Woodland. It is possible for the system to
switch back to a grassland, but this can only
occur during the first five or six years when
Combretum shrubs are still vulnerable to fire;
otherwise the system is trapped in the Bushland
frame forthe restof the simulation (i.e., Bushland
is an absorbing state).

A switch back to Grassland may be triggered
by a hot fire during the first six years in the
Bushland frame. We therefore introduce a
variable bushtime to keep track of the number
of years since the switch from Grassland to
Bushland.

While bushtime is less than 7, the following
rules apply:

1. The variable fuel-load is reset to zero after any
fire.

2. Fuel-load is increased by one if rainfall is low,
and by two if rainfall is high.

3. Afirecanonly occurif match ison (ignition)and
the fuel-load is greater than orequal to 1. The fire
will always be cool if the ignition is early orif the
fuel-loadis 1. Ifignitionis late, the fire will be hot
if the fuel-load is 3 or greater, and can be either
hot or cool (with equal probability) if the fuel-
load is 2.

The rule for switching from Bushland to
Grassland is:
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Switch definitely if there is a hot fire and bushtime <
3, with probability 0.75 if bushtime is 3 or 4, and
with probability 0.5 if bushtime is § or 6. Otherwise
the system is trapped in the Bushland frame for the
rest of the simulation. What occurs in the Bushland
frame during that time is irrelevant.

The Grassland frame. In the Grassland

frame we represent the Brachystegia shrubs by

the variable height on a scale of 0 to 3. We also
differentiate between the height category which
is an integer in the range 0 to 3, and the height
number which is a real number between 0 and
3.99. Thisdistinction permits amix of numerical
and qualitative modeling with advantages that
will soon become apparent.

Rules 1, 2, and 3 from the Bushland frame
are repeated inthe Grassland frame; i.e., there is
no change in the rules govemning fuel-load and
fire. In addition, there is a set of rules for
increasing or decreasing the height of
Brachystegia shrubs (a demon sets height equal
to 1 whenever the system switches into the
Grassland frame):

1. Lowrainfall adds 0.2 to the height number, while
high rainfall adds 0.25.

2. The following table determines how much to
subtract from the height number, depending on
the category of elephants and on the height cat-
egory. (The height category is just the truncated
integer value of the height variable.)

Brachystegia height category
1 2 3

1 0075 005 0.03
Elephant 2 015 010 0.06
density 3 025 020 0.10
4 035 035 035

(Small Brachystegia bushes whicharein the field
or grass layer, i.e., in height category 0, do not
seem to be eaten by elephants.)

3. Shrub height can also be reduced by hot fires. If

the height category is 0, 1, or 2, then we subtract

1.0 from the height number if the fuel-load is less
than 3; for higher fuel-loads we subtract 2.0.
Taller shrubs (height category 3) will only some-
times be affected by hot fires; the probability of
this happening is specified as a function of fuel-
load in a table, and we subtract 2.0 whenever a
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random number is less than the appropriate table

entry.

(Notice how inthe above rules we have exploited
the dual characterization of the height variable.
It is convenient to think of height as a real
variable in rule 1 and in the table entries of rule
2. This allows us to combine fractional in-
creases and decreases in height as a function of
rainfall and herbivory. On the other hand, it is
equally convenient to use the height category to
specify the columns in the look-up table in rule

2).

There are three conditions that will trigger a
switch from Grassland to Woodland:

1. If the shrub height has been continuously in
category 3 (the highest category) for five years.

2. If the annual rainfall for the current year is high
and the shrub height has been continuously in
category 3 for at least three years.

3. Irrespective of the rainfall, with probability 0.5 if
the height has been in category 3 for three years
and probability 0.75 in the fourth year.

The switch from Grassland to Bushland is
associated with a depletion of Brachystegia

boehmii

seedlings and shrubs and the en-

croachment of other shrubs and emergent tree
species. The rule is:

Switch if the height variable has been continuously
less than 1 for at least 5 years and there have been no
hot fires for the past two years.

The Woodland frame. Here we track the
state of the mature Brachystegia trees using a
canopy variable on a logarithmic scale as fol-

lows:
Canopy category Representing (% canopy)
1 Otod
2 41012
3 121028
4 280 60
5 > 60

The canopy variable can be specified as a
category (integer) or number (real variable) as
with the bush height variable.
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The fuel-load model is slightly more com-
plex here than in the other two frames, since
fuel-load builds up more slowly as the canopy
increases. Rule 2 of the Bushland frame is
replaced by a table specifying the annual in-
crement in fuel-load as a function of the rainfall
and the canopy category. Rules 1 and 3 from the
Bushland frame are copied without change.

The canopy number is randomly initialized
to a value between 3.5 and 4.5 whenever there
is a switch from the Grassland frame. The
following rulesthen apply to changes incanopy:

1. Add0.11 to the canopy number in a low rainfall
year and 0.22 in a high rainfall year.

2. The amount to be subtracted from the canopy
numbereach year because of elephants’ herbivory
is determined from the following table:

The switch from the Woodland frame to the
Grassland frame occurs when mature trees have
been removed from the canopy. The rule is:

Switch definitely in a year in which the canopy category is
1 and with probability 0.3 if the category is 2.

Figure 1 summarizes the transitions between
the frames.

A Frame-Based Implementation

Figure 2 demonstrates how the frame repre-
sentation can be used to implement the
Brachystegia model. In addition to the frames
corresponding to each state of the system, we
introduce a global frame which describes the
processes common to each state and determines
the transitions between states.

Canopy category Each frame contains a name slot for identifi-
1 2 3 4 5 cation, a description slot containing a short
o 0.075 verbal description of the processes modeled in
106 014012 0l ol that frame, and a list of variables. In addition, a
Elephant 2 035 030 0 023 o:;o parent slot is used to establish whether a frame
density 3 070 060 0% 05 is a specialization (child) of another frame.
4 100 0.80 0.80 0.50 0.80 Thus the Bushland, Grassland, and Woodland
frames are all child frames of the global frame
3. Subtract an amount from the canopy number if and consequently inherit the models and vari-
there is a hot fire. This amount is specified asa  ables contained in the global frame.
function of the fuel-load in a table.
Height of Brachystegia
Mature trees removed stays low for five years
ﬁr.om canopy by . due to high elephant density
high elephant density and/or fire and no hot fires
and/or fire for two years
> >
Brachystegia Combretum
I .
Woodland Grassland Bushland
< <4
Brachystegia height at Hot fire occurs in first
Figure 1. maximum for 3-5 years 5-6 years (probability of
A summary of the due to low elephant density transition depends on when
transition rules in and no hot fires fire occurs)
the Brachystegia
model.
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The global frame contains a current frame
slot which is used during the dynamic simula-
tion to indicate the active frame (or current state
of the system). A transition demon watches for
conditions under which a new frame would
become the current frame. When a transition is
triggered, a frame destruction demon is acti-
vated in the current child frame and a frame
creation demon is activated in the new child
frame. These demons save information on the
frame that has been vacated and initialize vari-
ables in the new frame.

Results

The model can be used in different modes.
For example, one can perform individual simu-
. lations with all driving variables input, year by
year, by the user. In this way the user can detect

possible ‘bugs’ inthe code orin the model itself,
fine tune some of the parameters of the model,
look for unrealistic output, make comparisons
with field data (where these are available) and
ultimately gain confidence in the model.

As a next step, the driving variables can be
generated from probability distributions built
into the model. In this mode one can also test
and gain confidence in the model by trying to
interpret the output. Figure 3 is an example of
output obtained in this way. It shows a Wood-
land switching to Grassland, the Grassland
switching to Bushland, recovering as the result
of a hot fire, and then switching irrevocably
back to Bushland. (Notice, incidentally, how
the variable canopy is only defined when the
model is in frame 1, the Woodland frame.
Similarly height is only defined in frame 2, the
Grassland frame.) .

It should be stressed that Figure 3 was gen-

Frame

Time (years)

Figure 3. An example of output from a single replicate of the Brachystegia model, showing switches from Woodland (frame 1) to Grassland
(frame 2), Bushland (frame 3), back to Grassland and then back to Bushland. Level I corresponds to low annual rainfall, 2 to high annual
rainfall. The Fire variable is 0 for no fire, 1 for a cool fire, and 2 for a hot fire.
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erated by one replicate only. Other replicates,
using exactly the same probability distribu-
tions, showed a variety of behaviors, depending
on rainfall pattemns, when fires occurred, and
whether fires were early or late, cool or hot. It
follows that if one is trying to detect trends or
wants to compare strategies or perform sensi-
tivity analyses, it is essential to look at the
output from a large number of replicates. The
management strategies, as well as the driving
variables, are hard-wired into the model in this
mode.

Figure 4 is an example of output one can
obtain from a series of replicated computer
experiments. The figure plots the probability of
ending a 100-year simulation in the Bushland
frame versus the probability of igniting a fire.
Results are shown for four different scenarios.
The figure illustrates how the probability of
being trapped in the Bushland frame increases

Starfield et al.: Frame-Based Dynamic Ecosystem Models

(at low ignition probabilities) with an increas-
ing probability of ignition, which corresponds
with experience. It also shows how, at high
ignition probabilities, the likelihood of ending
in the Bushland frame is reduced substantially
as the probability of early (and hence cool) fires
is increased. This too corresponds with experi-
ence. '

The exception to these trends is the case
where the elephant category is set at two, sug-
gesting a new hypothesis: the system is less
sensitive to the frequency and timing of fires
when elephant densities remain above a certain
threshold.

Figure S is also an example of output from a
series of replicated computer experiments, de-
signed in this case to explore sensitivity to the
probability of high rainfall. It could equally
well be interpreted as an experiment to explore
the likely consequences of climate change. It

]
© /‘—"“——‘_—_-‘-_- Im
8 /
§°-8- / — — Bephant density=2
2 |
£ ] —— Bephant densty=1
gos | -+« Bephant densty=0
ol
(V]
= 0.4- . S . . =+ = Bephant densty=1
2 l' A N, (higher prababilty
2 I/ N\ of early fire)
® 0.2- )
9 I/, N\
e 7 <
Q.
0 T T T T
0 0.2 0.4 0.6 0.8 1

Probability of *match* being "on*

Figure 4. A summary of a number of compusar experimeris, all starting in the Woodland frame and running for 100 years. The resulits
show the probability of an undesirable outcome—ending the simulation in the Bushland frame—and how it depends on elephant densities
and fire frequencies. Each point on a graph was obtained from 500 replicates. In all cases the probability of high rainfall was 0.5. The
probability of an early fire was 03, except for one experiment where that probability was increased to0 0.7.
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suggests that frequent buming would no longer
be a viable management option if the frequency
of high rainfall years were to0 increase.

Discussion

The purpose of this paper is to introduce a
modeling paradigm and give some idea of how
it might be used. There are a number of points
to be made about the approach, the way in which
itmight be implemented, and its implications in
resource management.

The novelty of this paradigm lies first in the
idea of constructing separate models for each
frame (or state) of the system, and second in
using rules to decide whether conditions have
changed so asto trigger aswitch from one frame
to another. At any time only one simple model
is operating. It is totally independent of all the

other models and does not call on them or
interact with them in any way. When the as-
sumptions behind the operating model are no
longerapplicable,itis retired and anothermodel
takes its place.

A consequence of this approach is a huge
simplification in the task of constructing asystem
model. Eachtime a new frame is introduced, so
too are the assumptions that define it. These
assumptions, in tumn, help to identify the key
processes and variables. Arguments about what
to include or leave out are easily resolved by
referring to-the frame definition. If necessary,
the definition can be expanded or additional
frames can be introduced, but at all times the to-
and-fro discussion that is so important a part of
model building is guided, unambiguously, by
the frame structure.

Useful models can be builtand tested quickly.
(The Brachystegia Woodland example described

Probability of ending in Bushland

Legend
== P(high ran)=0.9

——— P{high ran)=0.5

-+« P{highran)=0.1

| T T
0 0.2 0.4 0.6

—
0.8 1

Probability of "match” being “on*

Figure 5. An experiment to explore possible effects of climate change. It suggests that a strategy of frequens burning is only effective if there
is a low probability of high rainfall. In these simulasions the elephans density was at level 1 and the probability of an early fire was 03.
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above, was constructed and tested by a team of
three working for two days.) The approach
lends itself to rapid prototyping; ideas can be
tested and rejected without tearing the whole
fabric of a large and complicated model. All too
often, system models get bogged down in de-
tails and are redesigned before they have been
completed and tested. Frame-based modeling
encourages modelers firstto build and test simple
models and then, guided by that experience, to
add detail (where necessary) as part of a sensi-
tivity analysis of the working model.

It is not obligatory to use qualitative vari-
ables in a frame-based model, but qualitative
variables defined in a functional manner also
facilitate the process of constructing a model.
For example, the definition of a hot fire in the
Brachystegia model prescribes its effect.
Similarly, the definition of shrub height in the
Grassland frame simplifies the herbivory rules;
by definition, elephants do not eat shrubs of
height category zero in the grass layer.

The combination of frames and qualitative
variables not only makes it easier to construct
models, it also makes it easier to describe them.
The result is vastly improved communication
between modelers and managers.

Managers and scientists alike tend to de-
velop hypotheses or heuristics based on their
ownexperience, but they seldom know whether
what they have observed, over periods of even
20 or 30 years, is truly representational or just a
sequence of perhaps unlikely events. For ex-
ample, a management heuristic that has been
recognized is ““set frequent early fires to promote
Woodland.” Figures 4 and S suggest that this
will be an effective management strategy only
if it is applied rigorously (the probability of an
early fire must be very high) and then only
under certain conditions; elephant densities
cannot be too high and the probability of high
rainfall must be below a threshold.

Figures 3, 4 and 5 demonstrate that even a
relatively small and simple model can lead to
intriguing results. A model such as the
Brachystegia model provides just enough
complexity to put experience into a more real-
istic context. We would argue that the useful-
ness of the model is a consequence of the
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modeling paradigm; the combination of frames
and qualitative variables lends itself to explor-
ing interactions between management, ongoing
processes (such as herbivory) and influential
events (such as fires) at alevel of resolution that
is simple enough to understand but complex
enough to give interesting and unanticipated
results.

For the same reasons, we believe this is an
appropriate paradigm (as Figure § suggests) for
exploring the likely effects of long-term climate
change. Climate change leads to shifts in the
frequency of rainfall, or shifts from early to late
rains, or an increased probability of storms, or
similar types of effects. All of these can be
captured effectively but parsimoniously in a
qualitative frame-based model.

Some of the above points apply to good
modeling practice in general and are not an
exclusive consequence of frame-based model-
ing. However, frame-based modeling makes it
easierto implement good modeling practices in
the same way as proponents of certain computer
languages would argue that their syntax en-
courages good programming practices.

All of the above points are concemned with
the model itself and are independent of how the
model is actually implemented on a computer.
Although this modeling paradigm was inspired
by the Al concepts of frames, slots, and demons,
these formal constructs are not actually neces-
sary for implementing small dynamic models
such as the Brachystegia Woodland model. (It
was, in fact, written in Pascal.) However, a
formal frame structure, such as that depicted in
Figure 2, offers a number of benefits:

® It has been designed to closely resemble the
overall structure of the systems being modeled.
The immediate benefit of this is that the modeler
isaided considerably in describing these systems.

® It lends itseif to the design of user-friendly soft-
ware. With a few small changes the structure
depicted in Figure 2 could be used in a graphical
user Interface to assist the modeler. This kind of
structure would be essential if the model has
many frames and interactions.

@ The concept of inheritance in frame systems
facilitates the implementation of hierarchical
frame models and ties in well with hierarchical
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descriptions of ecosystems (O’Neill et al. 1986).

® Just as some expert systems provide explana-
tions, so one could imagine extending the frame-
based representation to include a run-time expla-

nation feature.

For example, some of the resuits in Figure 4
could be explained as follows: At low ignition
probabilities, Brachystegia shrubs continue to
grow despite elephant herbivory. As the igni-
tion probability increases, so it becomes more
likely that the combination of fire and elephant
herbivory will suppress Brachystegia shrubs
and facilitate a switch from Grassland to
Bushland. At very high ignition probabilities,
there is an increased likelihood of a hot fire in
the first few years after a switch to Bushland,
and so there is an increased probability of a
switch back from Bushland to Grassland.

Itis unlikely that the computer could provide
an explanation of this kind, but it would be an
interesting research problem to design a feature
that could provide snippets of explanation which
would enable the user to construct a full ex-

planation.

® Finally, one can alsoimagine extending the para-
digm to aspatial patchwork of interacting regions.
Foreachregion, the ttemporal dynamics would be
simulated by a frame-based model. In some cases
the same model might apply to all regions, al-
though differentregionsata particular time might
be found in different frames. In other cases, there
could be different models (and hence sets of
frames) associated with different regions. The
frame models and frame transition rules would
be extended to include interactions between

nearest neighbors.

Cellular automata “are systems of cells in-
teracting in a simple way but displaying com-
plex overall behavior” (Wolfram 1985). Each
cell may be in one of a finite number of possible
states, and at each time step the cells update
their states according to a transition rule which
depends on the states of the neighboring cells.
Cellular automata models are having animpact
on our understanding of how ecological pro-
cesses engender and maintain patchiness and
how we interpret spatial patterns (Phipps 1992).
If we were to add a spatial component to frame-
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based models, we would have the spatial power
of cellular automata models with the temporal
power of the frame-based paradigm. This could
provide the appropriate level of resolution
(neither too detailed nor too simple) for models
addressing regional problems. Q.

——
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