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Bioclimatic models (also known as envelope models or, more broadly, ecological niche
models or species distribution models) are used to predict geographic ranges of organ-
isms as a function of climate. They are widely used to forecast range shifts of organisms
due to climate change, predict the eventual ranges of invasive species, infer paleoclimate
from data on species occurrences, and so forth. Several statistical techniques (including
general linear models, general additive models, climate envelope models, classification
and regression trees, and genetic algorithms) have been used in bioclimatic modeling.
Recently developed techniques tend to perform better than older techniques, although
it is unlikely that any single statistical approach will be optimal for all applications
and species. Proponents of bioclimatic models have stressed their apparent predictive
power, whereas opponents have identified the following unreasonable model assump-
tions: biotic interactions are unimportant in determining geographic ranges or are
constant over space and time; the genetic and phenotypic composition of species is
constant over space and time; and species are unlimited in their dispersal. In spite of
these problematic assumptions, bioclimatic models often successfully fit present-day
ranges of species. Their ability to forecast the effects of climate change or the spread of
invaders has rarely been tested adequately, however, and we urge researchers to tie the
evaluation of bioclimatic models more closely to their intended uses.
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Introduction

The understanding of species’ geographic
ranges (the areas where these species occur)
is an important and classical ecological chal-
lenge (Brown et al. 1996; Gaston 2003). It has
been on researchers’ agendas for a long time
and has recently received additional attention
as a result of global change and the correspond-
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ing need to predict range shifts due to climate
change, to estimate where an invasive species
or disease will spread, or to predict the fate of
endangered species. Another reason for the re-
newed interest in geographic ranges is the rise
of macroecology, which studies “relationships
between organisms and their environment that
involve characterizing and explaining statistical
patterns of abundance, distribution, and diver-
sity” (Brown 1995, p. 10; see also Brown &
Maurer 1989; Blackburn & Gaston 2003).

Particularly important tools in studies of
the geographic range are bioclimatic models,
also known as envelope models (Kadmon et al.
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2003), climate response surfaces (Huntley
1995), homoclines (Weber 2001), or—more
broadly—ecological niche models (Peterson &
Vieglais 2001) or species distribution models
(Loiselle et al. 2003). These models have be-
come very popular in recent years. In this re-
view, we outline the general approach of bio-
climatic modeling, discuss objections that have
been made to this approach, review different
statistical methods used in bioclimatic model-
ing, list current applications, evaluate the gen-
eral contributions of bioclimatic modeling, and
indicate present obstacles and needs, thereby
suggesting future directions.

Despite their wide use, bioclimatic mod-
els are controversial. Their proponents have
praised the models’ apparent predictive power:
“Species that have been examined are diverse,
including plants and animals, freshwater and
terrestrial species, and vertebrates and inverte-
brates. Almost invariably, predictivity [. . .] has
been excellent” (Peterson 2003, p. 426). On the
other hand, opponents have pointed out un-
reasonable model assumptions: “Climate enve-
lope approaches might be inadequate for many
species” (Sax et al. 2007, p. 468). We will show
that neither extreme viewpoint is supported by
currently available information.

How Is It Done? Bioclimatic
Modeling Approaches

General Approach

The idea that geographic ranges of species
are determined by climatic conditions was
mentioned as early as the beginning of the
19th century (Latreille 1819, cited by Davis
et al. 1998a). This idea forms the basis of biocli-
matic models, which can be grouped into two
classes. The first consists of mechanistic mod-
els, which use a species’ physiological tolerance
to factors, such as heat, cold, or frost, to pre-
dict this species’ range (Doley 1977; Patterson et

al. 1979; Prentice et al. 1992; Sykes et al. 1996;
Kearney & Porter 2004; Hijmans & Graham
2006). The physiological tolerances are usu-
ally measured in the laboratory, then applied to

field conditions. By contrast, empirical models,
which form the other and larger class of bio-
climatic models, apply a top-down approach.
Here, physiological tolerances are unknown or
disregarded in the modeling process. It is not
even assumed that a species’ geographic range
is directly determined by physiological toler-
ance. Instead, a number of climatic variables
(e.g., temperature [minimum, maximum, av-
erage], precipitation, evapotranspiration) are
measured for many different locations, often
cells in a grid, and statistically compared to the
occurrence of the focal species at these loca-
tions. This procedure yields the climatic range
limits of this species’ distribution and allows the
prediction of, for example, range shifts due to
climate change. In some models, nonclimatic
variables of potential importance (e.g., edaphic
or land-use variables) are included as well. A
wide range of statistical models have been used,
which will be discussed later in this paper.

Key Assumptions

Like all models, bioclimatic models make a
number of assumptions that are not strictly
met in nature (Box 1; Woodward & Beerling
1997; Davis et al. 1998a,b; Lawton 2001; Pear-
son & Dawson 2003; Hampe 2004; Guisan &
Thuiller 2005; Sax et al. 2007).

BOX 1. Key assumptions of bioclimatic
models

– Biotic interactions are unimportant in deter-
mining geographic ranges or are constant
over space and time.

– The genetic and phenotypic composition of
species is constant over space and time.

– No dispersal limitation: species occur at all
locations where climate is favorable and
nowhere else.

Biotic interactions are unimportant in determin-

ing geographic ranges or are constant over space and

time. In mechanistic bioclimatic models, where
physiological tolerances measured in the labo-
ratory are used to predict geographic ranges in
the field, it is assumed that biotic interactions
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are unimportant for species’ distributions. Con-
trary to the wisdom of entire ecological subdis-
ciplines, these models assume that realized eco-
logical niches, which we see in the field, are not
different from fundamental ecological niches
measured in the laboratory (Hutchinson 1957).
They assume that neither competition, mutu-
alism, nor predation is important for species’
distributions.

Empirical bioclimatic models make a softer
assumption than mechanistic models on the in-
fluence of biotic interactions. Although they
do not explicitly consider biotic interactions,
their predictions are still valid if the influence
of biotic interactions is constant over space and
time. When an empirical model is parameter-
ized for species occurrence data, the biotic in-
teractions that caused these occurrence data
are implicitly incorporated (the model should
capture the species’ realized niche). If the model
is, for example, constructed to predict the fu-
ture geographic range of an invader in an exotic
continent, the crucial question is whether the
influence of biotic interactions on this species’
occurrence in the exotic continent is the same as
in the native continent (does the realized niche
remain the same?). Similarly, if the model is
constructed to predict the temporal range shift
due to climate change, the crucial question is
whether the influence of biotic interactions will
remain constant over space and time. Empirical
models assume this to be the case.

Even this softer assumption of empirical bio-
climatic models as compared to mechanistic
models clearly contradicts ecological principles
that are commonly outlined in textbooks (e.g.,
Begon et al. 2005). Biotic interactions do vary
with space and time, for example because pop-
ulations of competitors, mutualists, and preda-
tors vary with space and time. Voigt et al. (2003)
showed that species from different trophic lev-
els respond differently to climate change: the
ranges of species within a given community are
shifted unequally, hence the community and
the biotic interactions are disrupted (see also
Schmitz et al. 2003). Similarly, paleoecologi-
cal studies report that plant communities with
no present-day analogues were common in the

past, suggesting that novel climatic conditions
in the future will also lead to no-analog com-
munities. In other words, climate change may
reshuffle communities and biotic interactions
(Williams & Jackson 2007; Williams et al. 2007).
Suttle et al. (2007) showed experimentally that
biotic interactions can be more important than
direct climate effects for species occurrences.
With respect to invasive species, it is well known
that biotic interactions differ between the na-
tive and exotic ranges of invaders. The enemy
release hypothesis (Keane & Crawley 2002;
Mitchell & Power 2003; Torchin et al. 2003)
and EICA hypothesis (Evolution of Improved
Competitive Ability; Blossey & Nötzold 1995;
Withgott 2004) both say that species reaching
higher densities in their exotic than their native
range do so specifically because they face fewer
enemies in their exotic range.

The genetic and phenotypic composition of species is

constant over space and time. In both mechanistic
and empirical bioclimatic models, it is assumed
that the functional properties of species, that
is, their phenotype and genotype, are constant
over space and time. For example, when trying
to predict paleoclimatic conditions based on a
species’ current and past distributions, a biocli-
matic modeler assumes that this species has not
changed during this long time period. When
predicting range shifts due to global change,
the modeler assumes that the new environ-
ment where the range has shifted to does not
cause any genetic or phenotypic changes. And
when predicting the potential range of an exotic
species, it is additionally assumed that the few
individuals that founded the population were
genetically identical to the much larger source
population.

Similarly to the first assumption of biocli-
matic models, this second assumption ignores
basic biological principles, in this case from
the discipline of evolutionary biology. Evolu-
tionary change does happen and sometimes
even relatively fast. Ecological niches are of-
ten conservative (Peterson 2003), but espe-
cially when confronted with a new environ-
ment, species sometimes evolve rapidly (Davis
& Shaw 2001; Cox 2004; Strayer et al. 2006;
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Lockwood et al. 2007; Sax et al. 2007). Pheno-
types change much faster than genotypes, but
such nongenetic changes are again ignored by
bioclimatic models. Phenotypic plasticity is of
general importance (Karban & Baldwin 1997;
Tollrian & Harvell 1999; DeWitt & Scheiner
2004) and might be especially pronounced in
invaders (Daehler 2003; Strayer et al. 2006).

A good illustration of the problematic as-
sumption that the genetic and phenotypic com-
position of species is constant over space and
time is the frequent observation that invaders
have larger body sizes in their exotic than their
native range. For instance, the green crab (Carci-

nus maenas) has a 30% larger carapace width
in its exotic than its native European range
(Torchin et al. 2001). Since an individual’s physi-
ological tolerances critically depend on its body
size, the size differences of many invaders be-
tween native and exotic range possibly relate to
climatic niche differences and thus to serious
errors in the exotic range predictions of biocli-
matic models.

No dispersal limitation: species occur at all locations

where climate is favorable and nowhere else. This third
assumption also applies to both mechanistic
and empirical models. Its first part, that species
occur at all locations where climate is favor-
able, says that dispersal is unlimited, that is, that
species have had the ability and sufficient time
to populate all locations where climate is favor-
able. In fact, however, many species lack the
means to reach suitable but distant locations,
and species such as trees need long time peri-
ods to extend their range even to relatively close
locations (Pearson 2006). Brown et al. (1996) put
it as follows: “The success of introduced species
in so many parts of the world indicates that
many, probably most, species do not live every-
where they can” (pp. 614–615).

The second part of the above assumption
says that species only occur at locations where
climate is favorable. In other words, bioclimatic
models ignore source–sink dynamics and as-
sume that sinks do not exist. Metapopulation
textbooks, such as Hanski (1999), include much
evidence to the contrary.

Thus, bioclimatic models ignore a number of
fundamental biological principles. It is gener-
ally unwise, however, to prejudge models based
on their assumptions. Instead, their usefulness
should be evaluated by means of performance
tests against empirical data. We will come back
to this point below.

Statistical Methods

In empirical bioclimatic models, various sta-
tistical approaches are used to predict a species’
distribution based on climatic conditions
(Box 2; for further, less frequently used ap-
proaches, see Guisan & Zimmermann 2000;
Guisan & Thuiller 2005; Heikkinen et al. 2006;
and references in Table 1).

BOX 2. Statistical methods often used for em-
pirical bioclimatic models

– Logistic regression, generalized linear
model (GLM)

– Generalized additive model (GAM)
– Climate envelope (e.g., BIOCLIM)
– Classification and regression tree (CART)
– Neural network (NN), genetic algorithm

(e.g., GARP)

Logistic regression analysis is a relatively
straightforward technique to regress a binary
response variable (presence/absence) against
climatic variables. It has been used in many dis-
ciplines (e.g., medical, social, and biological sci-
ences) and is thus well known and transparent.
For general information, see for example Hos-
mer and Lemeshow (2000). Logistic regression
models are generalized linear models (GLMs)
with a logit link function, that is, for a binary
response variable. In GLMs, the response vari-
able is generally modeled as a linear function
of the independent variables.

In generalized additive models (GAMs),
the response variable is modeled as the ad-
ditive combination of independent variables’
functions, e.g., as smooth functions. This
greater flexibility of GAMs allows a better
data fit but comes with less transparency and
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interpretability. See Hastie and Tibshirani
(1990) for a general introduction to GAMs.
General linear models and general additive
models are widespread statistical techniques
with many general applications.

Climate envelope techniques (e.g., ANU-
CLIM, BIOCLIM, DOMAIN, FEM, HABI-
TAT, and Mahalanobis distance) are more
specialized but also the classic bioclimatic mod-
eling approach. They fit a minimal enve-
lope in a multidimensional climate space and
use presence-only instead of presence/absence
data, which can be highly advantageous: many
data sets provide presence-only data, and even
if absence points are available, they are not al-
ways reliable, especially for areas that are not
thoroughly inventoried or for species that are
difficult to detect. On the other hand, if in-
formation on absence points is available and
reliable, it is to a model’s disadvantage not to
employ it.

In classification and regression tree analysis
(CART), the data set is recursively split into
increasingly homogenous subsets with respect
to the dependent variable, yielding a binary
decision tree. The decision rules at the nodes
use one or more of the independent variables.
See Breiman et al. (1984) for more information.

Neural networks (NNs) and genetic algo-
rithms are powerful approaches, but they are
sometimes black boxes, so the models and pre-
dictions are often hard to interpret. Different
NNs and genetic algorithms have been devel-
oped for bioclimatic models where the most
widely used appears to be GARP (Genetic
Algorithm for Rule-set Production; Stockwell
& Peters 1999; Peterson 2001; Peterson &
Vieglais 2001; Stockwell & Peterson 2002).
Similar to climate envelope techniques, GARP
does not need presence/absence data for its ap-
plication, but presence-only data are sufficient.

A number of studies have compared the per-
formance of these and other, less frequently
used techniques (Table 1). It is not straightfor-
ward to summarize these studies, however, as
they differ in several ways, for example with re-
spect to criteria for model evaluation. The first
difference relates to the data that the model pre-

dictions are compared to, which can be classi-
fied into three groups (Fig. 1; Araújo et al. 2005):
resubstitution—the model predictions are com-
pared to the same data used to fit the model;
data splitting—the data are split into a training
set used to fit the model and a validation set
used to evaluate the model (jackknifing, boot-
strapping, and cross-validation belong to this
category); or independent validation—the models
are fitted with data set A and compared to a
spatially or temporally independent data set B,
from a nonadjacent region or different time pe-
riod. Here, we arbitrarily decided to count data
sets as temporally independent if they differed
by at least 15 years (ideally, this time period
should depend on the focal species).

Independent validation is preferable for most
applications, followed by data splitting and re-
substitution. The accuracy measures given by
data splitting and especially resubstitution can
be inflated due to overfitting. Only independent
validation tests the kind of model predictions
that we usually want: if our goal is to evaluate
model predictions on range shifts due to cli-
mate change, the models should be evaluated
against observed range shifts, for instance, by
fitting them to historical data and comparing
them to current data. Similarly, if we evaluate
predictions on an invader’s exotic range, we
should fit the models to data from the species’
native range and compare them to data from its
exotic range. Independent validation, however,
was applied in only three of the 33 studies listed
in Table 1 (we will come back to this point in
the section Frontiers). Those studies that applied
two or all three of the evaluation methods show
that the ranking of modeling techniques often
depends on the evaluation method that is used.

Once it is clear which data should be com-
pared to model predictions, the second question
is how to compare them, that is, which mea-
sure of model performance to use. The most
appropriate evaluation metric depends on the
goals of the modeling exercise and the charac-
teristics of the model output (e.g., binary versus
continuous), so it is not surprising that differ-
ent authors have used different metrics. The
most commonly used ones are Cohen’s kappa
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TABLE 1. Studies comparing the performance of different statistical methods

Study Species Evaluation method Modeling techniques’ ranking1

Studies that tested the models by means of resubstitution (cf. Fig. 1)
Walker (1990) Kangaroos

(N = 3
species)

False positives, false negatives2∗ CART > GLM

Skidmore et al.

(1996)
Kangaroos

(N = 3)
Proportion of correct predictions∗ CART > BIOCLIM > SNPC

Mastrorillo et al.

(1997)
Fish (N = 3) Proportion of correct predictions3∗ NN > DA4

Bio et al. (1998) Plants
(N = 156)

χ2∗ GAM > GLM

Franklin (1998) Plants
(N = 20)

Residual deviance, false positives,
false negatives∗

CART > GAM > GLM

Loiselle et al.

(2003)
Birds (N = 11) Kappa∗ DOMAIN > Simple overlay >

GARP > GLM > BIOCLIM
Segurado and

Araújo (2004)
Amphibians,

reptiles
(N = 44)

Sensitivity,5 kappa∗ NN > GAM > CART ≈ GLM >

Spatial interpolation >

BIOMAPPER ≈ DOMAIN
Studies that tested the models by means of data splitting
Manel et al. (1999) Birds (N = 6) Proportion of correct predictions∗ NN > DA > GLM

Proportion of correct predictions,
sensitivity, specificity, kappa,
among others∗∗

GLM > DA > NN

Vayssières et al.

(2000)
Oaks (N = 3) Sensitivity, specificity,6 differential

positive rate7∗∗
CART > GLM

Elith and
Burgman
(2002)

Plants (N = 8) Area Under receiver operating
characteristic Curve (AUC)∗

GARP > GAM > GLM >

ANUCLIM

AUC∗∗ GAM > GLM > GARP >

ANUCLIM
Fertig and Reiners

(2002)
Mentzelia

pumila

True positives, true negatives, false
positives, false negatives∗,∗∗

CART ≈ GLM

Olden and
Jackson (2002)

Fish (N = 27),
artificial
species
(N = 2)

Proportion of correct predictions,
sensitivity, specificity∗∗

NN > CART ≈ DA ≈ GLM

Stockwell and
Peterson (2002)

Birds
(N = 103)

Proportion of correct predictions∗∗ GARP > GLM; performance of
coarse and fine surrogate models
heavily depend on sample size

Farber and
Kadmon (2003)

Woody plants
(N = 192)

Proportion of correct predictions,
sensitivity, specificity, kappa∗∗

Mahalanobis distance > BIOCLIM

Thuiller (2003) Trees (N = 61) AUC, kappa∗ NN > GAM > GLM > CART
AUC, kappa∗∗ NN > GAM > CART > GLM

Thuiller et al.

(2003)
Trees (N = 4) AUC∗∗ GAM > GLM > CART

Continued
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Table 1. Continued

Study Species Evaluation method Modeling techniques’ ranking1

Muñoz and
Felicı́simo
(2004)

Grimmia spp.,
Fagus

sylvatica

AUC∗∗ CART ≈ MARS > GLM

Robertson
et al. (2004)

Plants (N = 3),
cicadas
(N = 3)

Kappa∗∗ FEM > BIOCLIM

Johnson and
Gillingham
(2005)

Rangifer

tarandus

caribou

r, r s
∗∗ Mahalanobis distance > GLM >

GARP > HSI

Elith et al.

(2006)
Animals,

plants
(N = 226)

AUC, correlation, kappa∗∗ BoostedRT ≈ MARS-COMM >

GDM ≈ Maxent > GAM >

GLM > DOMAIN ≈ GARP >

BIOCLIM ≈ LIVES
Hernandez

et al. (2006)
Animals

(N = 18)
AUC, sensitivity, area predicted

present, kappa∗∗
Maxent > DOMAIN > GARP >

BIOCLIM
Lawler et al.

(2006)
Mammals

(N = 100)
AUC, sensitivity, specificity, kappa∗∗ Random forests > GLM >

GAM ≈ NN > CART ≈ GARP
Pearson et al.

(2006)
Proteaceae

(N = 4)
AUC, kappa∗∗ GAM ≈ NN > GLM >

DOMAIN > CART > GA >

GARP > BIOCLIM
Phillips et al.

(2006)
Mammals

(N = 2)
Extrinsic omission rate,

proportional predicted area,
AUC∗∗

Maxent > GARP

Randin et al.

(2006)
Plants

(N = 54)
AUC, kappa∗∗ GAM ≈ GLM

Schussman
et al. (2006)

Eragrostis

lehmanniana

Sensitivity, specificity, kappa∗∗ GLM > GARP

Zeman and
Lynen
(2006)

Rhipicephalus

appendicula-

tus

Mean squared difference∗∗ Weights of evidence (Bayesian) >

GAM > DA

Meynard and
Quinn
(2007)

Artificial
species
(N = 18)

AUC, sensitivity, specificity, kappa,
correlation true/predicted prob.
of occurrence∗∗

GAM > GLM > CART > GARP

Peterson et al.

(2007)
Birds (N = 3) AUC∗∗ Maxent > GARP

Tsoar et al.

(2007)
Animals

(N = 42)
Kappa∗∗ GARP > Mahalanobis distance >

HABITAT > DOMAIN >

BIOCLIM > ENFA
Studies that tested the models by means of independent validation
Dettmers et al.

(2002)
Birds (N = 6) Proportion of correct predictions∗∗ DA > CART > GLM >

Mahalanobis distance
Proportion of correct predictions∗∗∗ CART > Mahalanobis distance >

GLM > DA
Araújo et al.

(2005)
Birds

(N = 116)
AUC, kappa∗ NN > GAM ≈ GLM ≈ CART

AUC, kappa∗∗ NN > GAM ≈ GLM > CART
AUC, kappa∗∗∗ NN > GAM > GLM ≈ CART

Continued
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Table 1. Continued

Study Species Evaluation method Modeling techniques’ ranking1

Broennimann
et al. (2007)

Centaurea

maculosa

AUC∗∗ Random forests > BoostedRT >

GAM ≈ MARS > GLM >

MixtureDA > NN > CART
AUC∗∗∗ GAM > MixtureDA > Random

forests > GLM > CART >

MARS > NN > BoostedRT

1The rankings represent significant differences or trends. We decided not to exclusively rely upon significant
differences in order to allow for a better comparison of the studies. 2True positives are correctly predicted presences,
true negatives are correctly predicted absences, false positives are predicted presences where absences are observed,
and false negatives are predicted absences where presences are observed. 3Proportion of correct predictions = (number
of true positives + number of true negatives)/(number of true positives + number of true negatives + number of false
positives + number of false negatives). 4DA denotes discriminant analysis. 5Sensitivity (proportion of true positives
correctly predicted) = number of true positives/(number of true positives + number of false negatives). 6Specificity
(proportion of true negatives correctly predicted) = number of true negatives/(number of true negatives + number
of false positives). 7Differential positive rate = sensitivity – (1 – specificity). ∗Resubstitution. ∗∗Data splitting.
∗∗∗Independent validation.

(used in 15 studies) and AUC (Area Under re-
ceiver operating characteristic Curve; used in
14 studies. There is an ongoing debate on the
best measures, but we cannot go into detail
here and refer interested readers to the litera-
ture (Fielding & Bell 1997; Guisan & Zimmer-
mann 2000; Pearce & Ferrier 2000; Manel et al.

2001; Fielding 2002; Liu et al. 2005; Vaughan
& Ormerod 2005; Allouche et al. 2006).

The overall picture painted by Table 1
is that no modeling technique consistently
outperforms other techniques. The findings
of the different studies are highly variable,
but the most recent comparisons suggest
that new techniques—including the model-
averaging random forests (Lawler et al. 2006;
Broennimann et al. 2007) and the Bayesian
weights-of-evidence model (Zeman & Lynen
2006)—outperform more established methods.
On the other hand, since these techniques
have only been included in a few comparative
studies, it is currently impossible to estimate
their general predictive power. Of the more
classic methods outlined above—GLM, GAM,
and climate envelope—GAM usually performs
best, followed by GLM, and climate envelope
techniques rank in third place. Mixed results
have been reported for CART and NNs, but
the latter have performed relatively well over-
all, sometimes surpassing GAM. The perfor-

mance of the widely used GARP appears to
be intermediate. In conclusion, the choice of
method will always depend on the focal species,
data set, and question, but given that the newest
techniques often achieve the most accurate pre-
dictions and that more techniques are con-
stantly being developed, it remains to be seen
if one or a few techniques can excel for most
applications.

What Is It Done For? Applications
of Bioclimatic Modeling

Bioclimatic models have come into wide use
in ecology in recent years and have been ap-
plied to a broad range of ecological problems,
both basic and applied (Manel et al. 2001;
Guisan & Thuiller 2005; Peterson 2006). The
following brief survey covers their major uses.

Predicting the Future

Bioclimatic models are the most important
tool now used to predict future changes in
the geographic ranges of species. The two
most common applications are predicting shifts
in geographic ranges in response to anthro-
pogenic climate change and the establishment
or spread of invasive species after they are in-
troduced into new regions by humans.



Jeschke & Strayer: Bioclimatic Models 9

Figure 1. Different strategies of model validation.(In color in Annals online.)

Predicting Responses to Climate Change
Bioclimatic models often are coupled to

climate-change models to predict how the
geographic ranges of species will shift as
anthropogenic climate change proceeds (e.g.,
Lindenmayer et al. 1991; Brereton et al. 1995;
Oberhauser & Peterson 2003; Peterson et al.

2004a; Roura-Pascual et al. 2004; Araújo et al.

2005; Bomhard et al. 2005; Thuiller et al.

2005a,b; Walther et al. 2005; Téllez-Valdés
et al. 2006; Lima et al. 2007; Nunes et al. 2007;
Williams et al. 2007). The goal is typically to pre-
dict the range (or survival) of species, but it may
also be to compare the biological effects of dif-
ferent climate-change scenarios. A wide range
of species have been treated by these models,
including economically or ecologically impor-

tant species such as crops, valuable species
that are harvested from the wild (e.g., timber,
sport fishes), pests, diseases, biocontrol agents,
foundation or keystone species, and imperiled
species (Lindenmayer et al. 1991; Brereton et al.

1995; Roura-Pascual et al. 2004; Araújo et al.

2005; Bomhard et al. 2005; Parra-Olea
et al. 2005; Téllez-Valdés et al. 2006; Nunes
et al. 2007).

Thus, Thuiller et al. (2005b) used bio-
climatic models to derive several important
insights about how climate change might af-
fect the local (i.e., a 50 × 50 km grid) com-
position of plant communities in Europe. They
suggested that climate change would cause both
local losses and gains of plant species, that these
changes could be large, and that there would
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Figure 2. Effects of climate change on local plant communities in various biogeographic
regions of Europe. The map shows the estimated percentage of the plant species that currently
occur in a 50 × 50 km pixel that would be lost from that pixel as a result of one specific
climate-change scenario (from Thuiller et al. 2005b; copyright 2005 National Academy of
Sciences, U.S.A.).(In color in Annals online.)

be large regional differences in the severity of
change (Fig. 2). They also found that predic-
tions differed across climate-change scenarios,
and that dispersal rates of plants could strongly
influence how plant communities changed.

Conservationists have begun to couple bio-
climatic models to spatially explicit information
on the distribution of reserves or threats (typ-
ically land-use change) to ask how the spatial
structure of the real world affects the response
of species to climate change (Araújo et al. 2004;
Bomhard et al. 2005; Parra-Olea et al. 2005;
Téllez-Valdés et al. 2006; Hannah et al. 2007).
Not surprisingly, such models suggest that cli-
mate change will complicate efforts to protect
species and should be taken into account in cur-

rent conservation planning. For instance, Han-
nah et al. (2007) concluded that existing reserve
networks were unlikely to conserve all species
of interest through a period of climate change,
and that early planning could substantially re-
duce the area of reserves necessary to protect
species.

Predicting Ranges of Invasive Species

Because invasive species cause ecological and
economic damages (Mack et al. 2000; Lodge
et al. 2006; Lockwood et al. 2007), many ecol-
ogists have used bioclimatic models to project
the future ranges of alien species. These project-
ions are used to assess the risk associated with
the establishment of new aliens, to demonstrate
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the need for import controls on potential pest
species (Panetta & Mitchell 1991), or to target
management actions to control these species
(Peterson & Robins 2003). Bioclimatic models
for invasive species have been run for small re-
gions (Iguchi et al. 2004, Underwood et al. 2004;
Guo et al. 2005; Anderson et al. 2006), conti-
nents (Strayer 1991; Sindel & Michael 1992;
Beerling et al. 1995; Martin 1996; Peterson
et al. 2003, 2004b, 2006a; Drake & Bossen-
broek 2004; Drake & Lodge 2006; Zambrano
et al. 2006; Chen et al. 2007; Fitzpatrick et al.

2007; Herborg et al. 2007; Loo et al. 2007),
and the entire globe (Roura-Pascual et al. 2004;
Ron 2005; Thuiller et al. 2005c; Li et al. 2006;
Mohamed et al. 2006; Raimundo et al. 2007).
Box 3 describes how the range of the inva-
sive zebra mussel (Dreissena polymorpha) has been
predicted in North America by means of bio-
climatic modeling.

Figure 3 shows another example of the use of
a bioclimatic model to predict the range of an
invasive species in a new continent, and also il-
lustrates the critical importance of careful eval-
uation of model performance.Loo et al. (2007)
used GARP to predict the potential range of
an invasive freshwater snail (Potamopyrgus antipo-

darum) in North America. Models based on its
native distribution in New Zealand produced
satisfying fits for New Zealand (AUC = 0.73)
but seriously underpredicted the range that the
species has already achieved in North America.
Models based on these existing North Ameri-
can occurrences predicted a much wider po-
tential range of this species in North Amer-
ica. The large discrepancy between the two
models has significant implications for the
management and eventual impacts of this
species.

Bioclimatic models also have been used to
assess whether the current range of a well
established alien is likely to increase in the
future as it fills out its range (Martin 1996;
Zambrano et al. 2006) or responds to anthro-
pogenic climate change (Roura-Pascual et al.

2004). Herborg et al. (2007) combined the out-
put from a bioclimatic model with estimates

of ballast water releases at various ports to
identify the entry points at which the Chi-
nese mitten crab (Eriocheir sinensis) was most
likely to invade, a problem with obvi-
ous utility for monitoring and management
programs.

Understanding the Present

Bioclimatic models also are widely used to
describe or interpret present-day species dis-
tributions, or to address current management
problems.

Investigating Mechanisms Underlying
Geographic Ranges

Bioclimatic models have been used to investi-
gate the roles of climate and other variables in
setting the geographic ranges of species (Law
1994; Manning et al. 2005; Rees et al. 2007).
They may be run to see whether a particular
value of a specific climatic variable hypothe-
sized to be important in range bounding, or in-
deed any climatic variable, coincides with the
actual range boundary of a species. If the range
boundary lines up with a climatic variable, that
variable is interpreted as controlling the range
boundary. If no climatic variable coincides with
the range boundary, then nonclimatic variables
are thought to be important. Ecologists have
been particularly interested in whether climatic
variables or other causes are responsible for dis-
junctions in species ranges, or whether large ar-
eas of suitable climate exist that fail to support
a species for other reasons.

Describing the Actual Range
from Sparse Survey Data

The actual geographic range of a species
may be poorly known, especially if the species
is cryptic in habit or has received little study.
Bioclimatic models based on incomplete distri-
butional information have been widely used to
infer the full geographic range of the species
(Walther et al. 2004; Pearson et al. 2007; and
references listed below). This exercise has many
applications. The models can be used to guide
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surveys for rare or valuable species in hitherto
unsampled areas (Lindenmayer et al. 1991;
Villordon et al. 2006; Pearson et al. 2007). Es-
timates of the actual range of a species can be
compared to the distribution of protected ar-
eas to assess whether the species is adequately
protected (Gaubert et al. 2006; Irfan-Ullah et al.

2007). Conservation assessments of rare species
typically require information on the geographic
range of the species (IUCN 2007), which can be
estimated by bioclimatic modeling (Sérgio et al.

2007). Fine-scale estimates of actual ranges de-

rived from bioclimatic models have been used
as the basis of statistical analyses of the controls
on species distributions or richness (White &
Kerr 2007), or to identify areas of endemism
(Escalante et al. 2007). Bioclimatic models have
even been used to predict the geographic dis-
tribution of diseases that are rare, such as Mar-
burg hemorrhagic fever (Peterson et al. 2006b)
and monkeypox (Levine et al. 2007), or for
which the geographic range of vectors is poorly
known (Peterson et al. 2004c; Adjemian et al.

2006).

BOX 3. A case study: predicting the range of the invasive zebra mussel (Dreissena polymorpha) in North
America.

– The appearance of the zebra mussel in North America in 1988 raised two critical questions: How bad
will its impacts on freshwater ecosystems and infrastructure be? And how far will it spread? Bioclimatic
models have been important in answering the latter question.

– Because zebra mussels are so widespread in Europe, even the earliest papers on its appearance in North
America (Hebert et al. 1989; Roberts 1990) noted that it might spread widely in North America. McMahon
and Tsou (1990) made the first attempt to define its potential range more precisely. Applying results from
laboratory studies on thermal tolerances of the species, they produced a rough map suggesting that the
species might occupy a broad range from just north of the U.S.–Canada border to about the southern
tier of states in the United States (see Figure for Box3). About the same time, Strayer (1991) developed
formal bioclimatic models for the species based on its distribution in Europe and a suite of bioclimatic
variables. Although both the climatic variables (terrestrial climate variables collected from paper records)
and the statistical analysis (discriminant analysis) would be considered primitive by modern standards,
these models again showed the potential for zebra mussels to occupy a large range in North America.
They also identified two key informational gaps. First, Strayer’s analysis suggested that the European
range of the zebra mussel was not climate limited, so that any geographic ranges projected from its
European distribution would have to be interpreted as minima (a caveat often overlooked by people
who cite this paper!). Second, although zebra mussel larvae require high levels of dissolved calcium to
survive and develop, there were not good databases on environmental calcium concentrations that could
be included in the models. It was clear that adding calcium to the models would severely reduce the
projected range of the species in North America.

– The next large advance in projecting the broad distribution of this species in North America did not
come until 2004, when Drake & Bossenbroek applied GARP models (based on the realized range of
zebra mussels in North America, rather than European records) to project the range of zebra mussels
in North America. These models included more variables (climate, hydrology, geology) than Strayer’s
models, operated at a finer spatial scale, and produced much more detailed projections of the potential
North American range than earlier models. Nevertheless, Drake & Bossenbroek’s models still did not
address calcium limitation very well. On the other hand, another recent model (Whittier et al. 2008)
was based solely on environmental calcium concentrations, but did not include any climatic data, and
produced correspondingly different predictions for the range, especially in New England, the Southeast,
and the Pacific Northwest.

– Any of these models is sufficient to identify the potential of zebra mussels to spread widely in North
America, and they are used widely by scientists and managers. The earliest models did not produce any
formal predictions for local occurrence of zebra mussels, and it remains to be seen how well the most
recent models will meet the needs of managers to predict local details of the geographic range. It is



Jeschke & Strayer: Bioclimatic Models 13

unfortunate that there has been very little rigorous comparison of models (but see Drake & Bossenbroek
2004, for an illuminating exception), nor any effective combination of climate and calcium into a single
model. Finally, it is curious that the most recent models exclude Canada, which is after all where the
species was first detected!

Figure for Box 3. Evolution of models to predict the geographic range of zebra mussels in North
America. Upper left: McMahon and Tsou’s (1990; copyright 1990 PennWell Corporation) model,
based largely on thermal tolerances measured in the laboratory. Lower left: range limits from two of
Strayer’s (1991) projections, based on different thermal limits inferred by discriminant analysis from
the European range of the species. Upper right: predictions from one of Drake and Bossenbroek’s
(2004; copyright, American Institute of Biological Sciences) GARP models, based on the realized
distribution of the species in North America. Darker shades show higher likelihood of invasion, and
dots show localities from which the species was known as of 2003. Lower right: predictions from
Whittier et al. (2008; copyright 2008 Ecological Society of America), based on environmental calcium
concentrations. Dots show sites from which Dreissena spp. had been observed as of October 2007.(In
color in Annals online.)

Identifying Suitable Sites for the Stocking
or Culture of Valuable Species

Humans often deliberately move valuable
species outside of their native range for agri-

culture, forestry, fisheries, or biological control.
Bioclimatic models have been used to identify
suitable sites at which to stock or grow such
species, or to evaluate the reasons behind stock-
ing failures (Richardson & McMahon 1992;
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Figure 3. Potential range of the invasive freshwater snail Potamopyrgus antipodarum in
North America based on (upper) its native range in New Zealand or (lower) its existing range
in North America (from Loo et al. 2007; copyright 2007 Ecological Society of America).
Shading shows the proportion of best subset GARP models that predict the occurrence of the
species, with darker shades showing areas where more models predict occurrence. Circles
show known point occurrences of P. antipodarum in North America.

Cunningham et al. 2002). In a related applica-
tion, scientists searching for suitable biocontrol
agents for pest species or germplasm for crops
have used bioclimatic models to locate suitable
source areas which might be explored to find
climatically well adapted populations (Fiaboe
et al. 2006; Villordon et al. 2006). It is inter-
esting to note that scientists using bioclimatic
models for these purposes sometimes observe

that a species can be established successfully
outside its bioclimatic niche as defined from
its native range (e.g., Richardson & McMahon
1992).

Clarifying Systematic Relationships

Finally, ecological information derived from
bioclimatic models has been used to bolster
conclusions of taxonomic studies about the
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distinctness of different populations that might
represent cryptic species (Fischer et al. 2001).
The assumption here is that different species
would have different climatic niches, so if two
groups of populations from different regions are
shown to have different bioclimatic niches, they
are likely to be different species or subspecies.

Reconstructing the Past

Paleoecologists have long used biotic distri-
butions to infer paleoclimates, either formally
with various models, or informally. Bioclimatic
models have recently been used to assist in
these paleoclimatic inferences (Kershaw 1997;
Kinzelbach et al. 1997; Dimitriadis & Cranston
2001; Marra et al. 2004; van der Kaars et al.

2006; Ramstein et al. 2007). They have also
been used to reconstruct conditions in the re-
cent past. For instance, it is difficult to know how
much anthropogenic activities have reduced
range sizes for the many species whose historic
ranges are poorly known. In such cases, biocli-
matic models can be used to reconstruct past
ranges, against which current, known ranges
can be compared to estimate range reductions
(Bond et al. 2006). Alternatively, climatic data
can be combined with land-use data to esti-
mate both past and present ranges to estimate
range reductions (Peterson et al. 2006c; Rees
et al. 2007).

Does It Make Us Wiser? General
Contributions of Bioclimatic

Modeling

Bioclimatic models have made several im-
portant general contributions to ecology. Most
obviously, they have been a rich source of quan-
titative projections or hypotheses concerning
the geographic ranges of species. These pro-
jections or hypotheses are potentially of great
value in many areas of both basic and applied
ecology, and are especially valuable because
ecologists have so few practical tools with which
to address these important questions. Because

Figure 4. The present-day range of the black
tufted-ear marmoset (Callithrix penicillata) as pre-
dicted by the random forests model and compared to
the observed range (from Lawler et al. 2006; copy-
right 2006 Lawler et al., Blackwell Publishing Ltd.).(In
color in Annals online.)

of limited testing with respect to the various
applications, however, the general usefulness of
bioclimatic models is currently unclear. We will
come back to this important point in the next
section, Frontiers.

Bioclimatic models have shown consider-
able abilities to fit even complicated geographic
ranges (Fig. 4), where the ranges of species with
narrow niches in climate space tend to be mod-
eled more successfully than those with broader
niches (Kadmon et al. 2003; Tsoar et al. 2007).
There has been some concern that bioclimatic
models might perform poorly for species that
have very slow dispersal (Stockman et al. 2006)
or are highly mobile (such species might be seen
passing through habitats that are not capable
of supporting the species over the long term;
Manning et al. 2005), but these issues have not
been fully resolved.

The general ability of bioclimatic models to
fit geographic ranges has reinforced the an-
cient notion that climatic variables often ex-
ert a primary control on the geographic ranges
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of most species. This conclusion must be in-
terpreted very cautiously, however, for several
reasons. First, species occur outside the ranges
predicted by bioclimatic models (e.g., Richard-
son & McMahon 1992; Loo et al. 2007), sug-
gesting that nonclimatic factors are of primary
importance in setting some range boundaries.
Additionally, there have been few tests of biocli-
matic models using freshwater or other poorly
dispersing organisms for which dispersal rather
than climate might be expected to set range
boundaries. Further, the coincidence of a range
boundary with an isoline of some climatic vari-
able is not enough to demonstrate that the
climatic variable sets the range boundary, al-
though it suggests a hypothesis that could be
tested by a more rigorous method. Finally, even
if the performance of bioclimatic models is in-
terpreted as evidence that climate is impor-
tant in setting geographic ranges, the consid-
erable variation in species distributions that
is not explained by these models shows that
there is ample room for other factors (biolog-
ical interactions, dispersal) to be important as
well.

Bioclimatic models have made essential con-
tributions to the scientific and public discussion
about the ecological effects of anthropogenic
climate change by providing quantitative sce-
narios and visualizations (e.g., Fig. 2). Even if
these scenarios cannot always be regarded as
literal predictions of the future, they certainly
show that climate change is likely to cause large
shifts in biotic distributions, that climate change
will interact strongly with other anthropogenic
drivers such as land-use change (Araújo et al.

2004; Bomhard et al. 2005; Parra-Olea et al.

2005; Téllez-Valdés et al. 2006; Hannah
et al. 2007), and that conservation planning and
reserve design will need to take climate change
into account (e.g., Hannah et al. 2007). Another
applied issue addressed by bioclimatic models is
the pressing problem of invasive species, includ-
ing diseases. Bioclimatic models have shown
that most invasive species have considerable
unrealized potential to spread (along with their
ecological and economic impacts) (e.g., Fig. 3
and references cited above), as long as humans

continue to be careless about providing these
species with transport opportunities. Finally,
bioclimatic models have been helpful in conser-
vation planning and surveys for rare species by
providing estimates of actual geographic ranges
from sparse survey data. Although it might be
argued that we didn’t need a model to tell us
that anthropogenic climate change would af-
fect species ranges or that invasive species pose
ecological and economic threats, the quanti-
tative output and powerfully evocative maps
produced by bioclimatic models (Figs. 2 and 3)
have lent weight and urgency to discussions of
these issues.

Finally, bioclimatic modeling has brought
a number of sophisticated statistical model-
ing techniques to ecology (see section Statistical

Methods). Methods used for bioclimatic model-
ing have obvious utility for habitat modeling
in general, as well as other ecological appli-
cations. Further, the increasingly sophisticated
discussion about evaluating the performance
of bioclimatic models (Fielding & Bell 1997;
Guisan & Zimmermann 2000; Pearce & Ferrier
2000; Manel et al. 2001; Fielding 2002; Liu
et al. 2005; Vaughan & Ormerod 2005; Al-
louche et al. 2006) has the potential to sub-
stantially improve the interpretation of models
with binary output, which are widely used in
ecology.

What Are the Major Obstacles
and Needs? Frontiers

Bioclimatic Models Are Often
Applied but Rarely Tested

The testing and evaluation of bioclimatic
models need to be tied more closely to their
specific intended uses. Two issues deserve more
careful attention: the degree of fit between the
model and the test data, and the type of data
that are used to evaluate the model. Many stud-
ies have judged model performance using weak
criteria (e.g., simply whether the model per-
forms better than random) that do not show
how useful the model will be for a particular
application. The metric used to judge a model
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(e.g., AUC, Cohen’s kappa, true skill statistic,
sensitivity, specificity) and the value of that met-
ric needed to demonstrate that a model is useful
both depend entirely on the intended uses of the
model. Just as there is no special value of r2 that
shows that a linear regression is adequate, there
will be no single value of AUC or kappa that
shows that a bioclimatic model is adequate for
all purposes.

The appropriate data for testing a model
likewise depend on the intended use of the
model (Fig. 1). If a bioclimatic model is intended
to identify a species’ present-day range based
on sparse survey data (see section What is it done

for?), it may be sufficient to evaluate model per-
formance by splitting the data into a training set
used to fit the model and a validation set used to
evaluate the model. Such tests have been done
frequently. Thus, studies given in Table 1 that
applied this evaluation method reported an av-
erage value of 0.85 ± 0.029 (SE; N = 12) for
AUC, where a random predictor has a value of
0.5, a perfect predictor achieves 1, and a value
≥0.9 is usually taken to indicate high accuracy
(Swets 1988; Manel et al. 2001; Araújo et al.

2005; Pearson et al. 2006; Randin et al. 2006).
For kappa, the average value of studies listed
in Table 1 is 0.52 ± 0.065 (SE; N = 12); here,
a random predictor has a value of 0, a perfect
predictor achieves 1, and the benchmark for
high accuracy is 0.7–0.75 (Monserud & Lee-
mans 1992; Fielding & Bell 1997; Araújo et al.

2005; Pearson et al. 2006; Randin et al. 2006).
While in a general sense these metrics suggest
that bioclimatic models of present-day ranges
perform satisfactorily, only an individual model
user can really say whether these values of AUC
or kappa are high enough (or indeed, whether
AUC or kappa are the appropriate metrics).

For most applications of bioclimatic model-
ing, especially for predicting range shifts due
to climate change or the spread of invaders,
model performance should be tested by means
of independent validation, rather than resub-
stitution or data splitting (cf. Fig. 1). It is usually
difficult to locate such independent data sets, so
studies that apply this method are currently the

exception (Box 4). A number of paleoecological
studies evaluated bioclimatic models based on
inferred past climatic conditions (Prentice et al.

1991; Martı́nez-Meyer et al. 2004; Martı́nez-
Meyer & Peterson 2006; Ramstein et al. 2007).
This is the best one can do if past climatic
conditions are unknown, but we do not list
such model evaluations in Box 4, as they are
less reliable and not directly comparable to
evaluations based on measured climate data.
Most of the studies in Box 4 only evaluated
the models against random predictions or did
not calculate any objective evaluation mea-
sure. Only a few calculated gradual quantita-
tive evaluation measures: Araújo et al. (2005),
Lima et al. (2007), Loo et al. (2007), and Broen-
nimann et al. (2007) reported AUC values of
0.80, 0.73, 0.61, and 0.50 on average, respec-
tively; Walther et al. (2005) and Araújo et al.

(2005) reported kappa values of 0.50 and 0.42,
respectively; and Dettmers et al. (2002) reported
an average proportion of correct predictions of
0.55. As expected, these metrics suggest that
bioclimatic models perform less successfully
when training data and test data are spatially or
temporally independent than if both are from
the same region and time. But again, whether
these metrics indicate satisfactory model per-
formance depends on the needs of the model
user.

BOX 4. Studies that tested bioclimatic models
by means of independent validation (cf. Fig. 1)

– Predicting the future
Climate change: Araújo et al. (2005), Walther et al.

(2005), Lima et al. (2007), Nunes et al. (2007)
Invaders: Beerling et al. (1995), Peterson and

Vieglais (2001), Peterson et al. (2003),
Thuiller et al. (2005c), Broennimann et al.

(2007), Fitzpatrick et al. (2007), Loo et al.

(2007)
– Understanding the present: Dettmers et al.

(2002)
– Reconstructing the past: Kinzelbach et al.

(1997), Hill et al. (1999).



18 Annals of the New York Academy of Sciences

Extending Bioclimatic Models

In spite of the scarcity of information, we
may cautiously conclude from the last sec-
tion that bioclimatic models, especially for pro-
jecting range shifts due to climate change or
the spread of invaders, need further improve-
ment before they reliably lead to excellent or
even good predictions. An important step to-
wards this goal may be taken by considering
the above-mentioned key assumptions of bio-
climatic models (section How is it done?). Some
studies already extended the current model-
ing approach by considering species interac-
tions (Leathwick & Austin 2001; Anderson et al.

2002; Leathwick 2002; Araújo & Luoto 2007;
Heikkinen et al. 2007; Sutherst et al. 2007). Dis-
persal limitation has sometimes been included
by an assumed maximum dispersal distance
(Midgley et al. 2006; Williams et al. 2007) or by
simply assuming that climatically suitable areas
that lie beyond obstacles such as mountains are
not within the potential range of the species
(Peterson et al. 2006c; Irfan-Ullah et al. 2007);
only a few studies applied more complex disper-
sal models (Carey 1996; Iverson et al. 2004). It
would be important to continue this work on ex-
tended bioclimatic models and then rigorously
test the models by means of independent valida-
tion, also in comparison to ordinary bioclimatic
models in order to learn how much is gained
by considering species interactions or dispersal
limitation. The limited knowledge we have so
far suggests that the gain can be substantial.
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